149449 (731725)

Файл №731725 149449 (Варіаційні принципи механіки)149449 (731725)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

29


Рівненський державний гуманітарний університет

Кафедра фізики

Курсова робота на тему:

В иконав:
студент V курсу фізико -
технологічного факультету
групи ФТТ-51
Громов Микола Володимирович
Науковий керівник:
доц. Сідлецький Валентин Олександрович

Рівне–2000

Зміст

Вступ 3

Розділ І. Загальна характеристика принципів механіки. ....................................3

1.1. Дійсний і уявні рухи для вільної матеріальної точки. 3

1.2. Дійсний і уявні рухи для невільної матеріальної точки. 3

1.3. Дійсний і уявні рухи для механічної системи. 3

1.4. Функція Лагранжа та її інтеграл у дійсному і уявному рухах. 3

Розділ ІІ. Варіаційні принципи механіки. ............................................................3

2.1. Принцип Остроградського-Гамільтона 3

2.2. Принцип екстремальної (найменшої) дії 3

2.3. Принцип стаціонарної дії Ейлера-Лагранжа 3

2.4. Принцип віртуальних переміщень 3

2.4.1. Віртуальні, можливі, дійсні переміщення. 3

2.4.2. Принцип Д'аламбера — Лагранжа. 3

2.4.3. Принцип віртуальних переміщень (принцип Лагранжа). 3

2.5 Оптико-механічна аналогія (принцип Мопертюї-Ферма) 3

Висновки 3

Література 3

Вступ

Варіаційні принципи класичної механіки є основними, вихідними положеннями аналітичної механіки, математично виражені у формі варіаційних співвідношень, з яких як логічні наслідки витікають диференціальні рівняння руху, а також всі положення і закони механіки. Варіаційні принципи відрізняються один від одного як за формою і способами варіювання, так і загальністю, однак кожен з них, в рамках його застосування, утворює єдину основу і мов би синтезує всю механіку відповідних матеріальних систем. Іншими словами, той чи інший варіаційний принцип класичної механіки потенційно включає в себе весь зміст цієї області науки і об’єднує всі її положення в єдине формулювання.

Варіаційні принципи динаміки є, по суті, основними і до того ж найзагальнішими законами руху матеріальних систем. Класична механіка базується на законах Ньютона, встановлених для вільних матеріальних точок, і аксіомах зв’язків. Справедливість варіаційних принципів доводиться, виходячи з цих законів та аксіом. В свою чергу, будь-який варіаційний принцип можна прийняти за аксіому і з неї логічно вивести закони механіки.

Варіаційні принципи класичної механіки виявились застосовними не тільки до дискретних матеріальних систем, але й до систем з розподіленими параметрами, до суцільних середовищ. Вони відіграють важливу роль в теорії поля і в математичній фізиці. З варіаційними принципами тісно пов’язані оптико-механічна аналогія, теорія канонічних перетворень, теорія груп Лі і закони збереження. Варіаційні принципи володіють великою евристичною цінністю; вони поширюються й на інші області фізики, зокрема на теорію відносності і на квантову та хвильову механіку, де важливу роль відіграють принципи найменшої дії і пов’язаний з ними лагранжів та гамільтонів математичний формалізм.

У 1744 p. Мопертюї1 сформулював без доведення один варіа­ційний принцип і застосував його в механіці й оптиці2. Утому ж самому році Л. Ейлер дав доведення цього інтегрального варіаційного принципу для випадку руху матеріальної точки в центральному силовому полі. Ж. Лагранж поширив цей принцип на широкий клас механічних рухів матеріальних систем, а Якобі3 в 1842 p. поглибив теорію цього принципу. У сучасній літературі розглядуваний інтегральний варіаційний принцип відомий під назвою принципу Ейлера—Лагранжа.

У першій половині XIX ст. був відкритий новий інтегральний варіаційний принцип, який тепер справедливо називають принципом Остроградського—Гамільтона. Першу важливу працю з теорії цього принципу виконав М. В. Остроградський у 1829 p. і опублікував у 1831 p. Дальший крок вперед зробив В. Гамільтон у 1834 p.; він довів цей принцип для руху меха­нічної системи в консервативному силовому полі. Цікаво, що відправним пунктом відповідних досліджень Гамільтона в механіці були його відкриття в галузі оптики. Виявилось, що існує глибокий зв'язок між законами механіки й законами оптики; цей зв'язок був використаний у ХХ ст. для побудови так званої хвильової механіки. У більш загальній формі принцип Остроградського—Гамільтона4 в 1848 p. довів М. В. Остроградський. Перейдемо до розгляду допоміжних понять, необхідних для розуміння викладу варіаційних принципів.

Розділ І. Загальна характеристика принципів механіки

Принцип механіки — це аксіоматичне твердження, з якого як логічний наслідок випливає зміст механіки як науки.

У
сі принципи механіки поділяються на неваріаційні і варіаційні. І ті й інші, у свою чергу, підрозділяються на диференціальні й інтегральні принципи (див. схему).

Неваріаційний принцип визначає властивості, що властиві усім рухам або в даний момент часу (диференціальний неваріаційний принцип) або на скінченому проміжку часу (інтегральний неваріаційний принцип).

Прикладом диференціального неваріаційного принципу є основний закон динаміки (другий закон Ньютона)

(а)

Прикладом інтегрального неваріаційного принципу є закон збереження енергії

Н* = h. (b)

Класична механіка, є логічним наслідком принципу (а). Німецький учений Г. Гельмгольц (1821—1894) заклав основи механіки, що випливають із принципу (b).

Усі варіаційні принципи механіки дають відповідь на питання: чим відрізняється дійсний рух системи від інших рухів, що допускаються зв'язками, накладеними на систему?

Кінематично можливий рух системи, що допускається накладеними на неї зв'язками, називається рухом порівняння.

Варіаційний принцип указує характеристику дійсного руху системи, віднесену або до даного моменту часу, або до кінцевого інтервалу часу. У першому випадку він називається диференціальним, у другому — інтегральним варіаційним принципом.

Варіаційні принципи механіки визначають найбільш загальні закономірності механічних рухів і тому знаходять широке застосування в сучасній механіці і фізиці.

Принципи, що викладаються в цій роботі є логічними наслідками принципу (а). Тут вони наведені як універсальні методи розв’язування визначених задач динаміки і статики, хоча кожний з них можна розглядати як аксіоматичне твердження, з якого логічно випливає зміст механіки при тих обмеженнях, при яких справедливий той чи інший принцип.

1.1. Дійсний і уявні рухи для вільної матеріальної точки.

Нехай вільна матеріальна точка з масою т рухається під дією сили, що має силову функцію U (х, у, z, t). Проекції сили на осі координат дорівнюють:

Координати точки змінюються за певними законами:

x=x(f), y=y(t), z==z(t). (1)

Нехай рухома точка в момент t0 пройшла через положення А в просторі, а в інший момент t1 >t0—через положення В (рис. 1). Умовимось називати момент t0 і положення А почат­ковими, а момент t1 і положення В—кінцевими. Рівняння (1) изначають рух точки т, який відбувається в дійсності, тобто за законами природи. Цей рух точки називатимемо дійсним її рухом.


Рис. 1

Разом з дійсним рухом вільної матеріальної точки розглядатимемо нескінченну множину уявних її рухів, які повинні задо­вольняти такі умови:

  1. кожний уявний рух по­чинається одночасно з дійсним рухом у момент t0 і закінчується також одночасно з дійсним рухом у момент t1;

  2. кожний уявний рух починається з положення А, що є початковим для дійсного руху, і закінчується в положенні В, яке є кінцевим для дійсного руху.

Положення і швидкість точки в будь-якому з уявних рухів нехай відрізняються, відповідно, від положення і швидко­сті точки в її дійсному русі нескінченно мало в кожний момент часу.

Визначені переліченими вище ознаками уявні рухи є лише кінематично можливими, тоді як дійсний рух точки від­бувається насправді під дією сил заданого силового поля.

Отже, поряд з дійсним рухом вільної матеріальної точки, який відбувається між положеннями А і В за проміжок часу (t0, t1), розглядатимемо нескінченно близькі до дійсного можли­ві її рухи, які всі відбуваються між тими самими положеннями А та В, між якими відбувається дійсний рух, і за той самий проміжок часу (t0, t1).

Порівнювані з дійсним рухом уявні рухи вільної точки можна задати аналітичне так. Виберемо три довільні однозначні неперервні і диференційовані функції часу ξ1(t), ξ2(t), ξ3(t), нескінченно малий параметр ε і вважатимемо, що уявлюваний рух точки визначається координатами

, (2)

де час t змінюється від моменту t0 до моменту t1. Швидкість точки в уявлюваному русі визначається трьома похідними по часу від координат

(3)

Щоб уявний рух відбувався протягом того самого проміжку часу і між тими самими положеннями А та В, що й дійсний рух матеріальної точки, функції ξ1(t), ξ2(t), ξ3(t) треба піді­брати так, щоб вони перетворювались в нуль у початковий і кінцевий моменти часу, тобто при t = t0 і t =t1:

ξ1(t0)= ξ2(t0)= ξ3(t0)=0, ξ1(t1)= ξ2(t1)= ξ3(t1)=0 (4)

При аналітичному визначенні уявних рухів ми здійснили малу зміну виду функцій x(f), y(t), z(t), які описують дійсний рух. Ця зміна, яка полягає в переході від функцій x(t), y(t), z(t) до нових функцій

що нескінченно мало відрізняються від старих функцій, назива­ється варіюванням функцій x(t), y(t), z(t). Прирости функцій, що знаходяться в резуль­таті варіювання, позначаються символом δ і називаються варіаціями функцій:

(5)

Користуючись поняттям варіації, можна стверджувати: якщо дій­сний рух точки відбувається за законом x=x(t), y=y(t), z=z(t), то порівнювані з ним уявні кінематично можливі рухи відбуваються за законом

Оскільки вибір варіацій δх, δy, δz довільний, то існує нескінчен­на множина уявних кінематично можливих рухів точки між заданими її положеннями.

1.2. Дійсний і уявні рухи для невільної матеріальної точки.

У випадку невільної матеріальної точки сформульовані вище в п.1.1. умови, які визначають клас кінематично можливих уяв­них рухів, слід доповнити ще однією: уявний рух точки по­винен бути узгоджений з зв'язками, не повинен порушувати їх5. Тому всі попередні результати справедливі і для руху невільної матеріальної точки, якщо тільки в рівняннях ру­ху точки використано незалежні узагальнені координати, які позначимо q1, q2 (при одній ступені вільності матимемо лише одну координату q). У цьому випадку, якщо дійсний рух точки визначається незалежними координатами q1(t), q2(t) , то, ана­логічно до попереднього, уявний кінематично можливий її рух буде характеризуватись функціями

Варіації координат тут дорівнюють

Характеристики

Тип файла
Документ
Размер
2,84 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7028
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее