FUUSIKA6 (731719), страница 3
Текст из файла (страница 3)
kus pw on aururõhk tasapinnalise vee kohal ja p’w on tegelik aururõhk w on küllastava veeauru tihedus. Asendades sambakõrguse h kapillaartõusu valemist saame
kus r tähistab vedela vee tihedust. Valem sisaldab veeauru tihedust, mis tuleb leida veeauru rõhust kasutades gaaside seadust. Teame, et kui kogu gaas oleks veeaur, siis ühe mooli ruumala rõhul p ja temperatuuril T oleks
(unustame hetkeks, et veeaur ei ole ideaalne gaas ja toatemperatuuril ei saa kogu atmosfäar koosneda veeaurust). Kui kogu atmosfäar koosneks veeaurust, siis tema tihedus oleks
Siiski, mitte kogu atmosfäär ei koosne veeaurust, vaid see osa, mis on määratud veeauru partsiaalrõhu ja kogurõhu suhtega (veeaur on atmosfääris nii hõredalt, et võime teda ikkagi vaadelda ideaalse gaasina). Seega on veeauru tegelik tihedus
Aururõhk langeb mitte ainult nõgusa pinna (kapillaarse meniski) kohal, vaid on madalam ka lahuse tasapinna kohal võrreldes puhta veega. Suhe on siin lihtne: aururõhk langeb suhteliselt niisama palju kui palju on lahuses vee molekule suhteliselt vähem kui puhtas vees:
kus p/p on veeauru rõhu suhteline langus, n’ on lahustunud ja n lahusti molekulide arv ruumalaühikus. Uhemolaarses vesilahuses on ühes liitris Na lahustunud aine molekuli ja ümmarguselt 1000/18=55.6Na lahusti molekuli. Seega ühemolaarse lahuse kohal on aururõhu suhteline langus
Madalamal kontsentratsioonil on aururõhu langus proportsionaalselt väiksem.
Lahustunud aine kontsentratsiooni suurenedes langeb mitte ainult aururõhk vaid ka lahuse külmumistemperatuur. Ka siin on mõju suhteliselt väike, ligikaudselt
kus C on lahuse molaarne kontsentratsioon. Kui lahustunud aine dissotsieerub, siis tuleb osakeste arvuks lugeda mõlemad komponendid summana.
TAHKISED
Tahkised ehk tahked kehad on niisugused, mis omavad kindlat kuju ja seega ei voola. Siiski, üleminek voolava ja mittevoolava seisundi vahel on pidev ja mõned kehad siiski voolavad, kuigi väga aeglaselt. Niisuguseid vedlikulaadseid tahkiseid nimetatakse ka amorfseteks kehadeks, sest neil ei ole kristallstruktuuri ja nende kuju on siiski aeglaselt muutuv. Tüüpilisteks näideteks võiks tuua pigi (asfalti) ja klaasi, samuti paljud polümeerid. Tõelised tahkised on seega kristallilise struktuuriga, mis tähendab, et nende omadused (näiteks tugevus või valguse murdumine) sõltuvad suunast, nad on anisotroopsed. Enamik kristallilisi tahkiseid on väga väikeste kristallidega, nii et murdepinnal ei pruugi kristallid alati näha ollla (metallid).
Kristallis on aatomid seotud valents-sidemetega, moodustades seega nagu hiiglaslikke molekule. Sidemed võivad olla kovalentsed või ioon-sidemed, nii nagu molekulidegi puhul. Tüüpiline ioonkristalli näide on keedusool, aga ka teised leeleismetallide soolad (kuupvõre). Ühesugustest aatomitest moodustuvad kristallid kovalentsete sidemete abil. Näiteks toome teemanti, milles süsiniku sp4 hübridiseerunud orbitaalid on seostunud naabersüsiniku orbitaalidega.
Kristallilised ained on elastsed. See tähendab, et kui neile rakendada jõudu, siis aatomid veidi nihkuvad oma tavalistelt, stabiilsetelt asukohtadelt, kuid püüavad siiski stabiilsesse seisundisse tagasi pöörduda. Makroskoopiliselt väljendub see keha (näiteks metallvedru) paindumises. Paindumisel vedru üks pool surutakse kokku, teine aga venitatakse välja. Deformatsiooni suurus (nihke suurus) on võrdeline rakendatava jõuga ja vastupidi, vedru poolt avaldatav jõud on võrdeline kokkusurumise (venituse) suurusega. Kui deformatsioon ületab teatava piirsuuruse, siis toimuvad kristallide tasapindade omavahelised nihked ja aatomid ei naase enam endistesse asukohtadesse, vaid moodustavad sidemed teiste naabritega. Niisugune deformatsioon on jääv ehk plastiline deformatsioon. Mõned metallid, nagu seatina, on vähe-elastsed ja alluvad kergesti plastilisele deformatsioonile, teised, nagu teras, on väga elastsed ja võivad plastiliselt üldse mitte deformeeruda, ennem murdudes.
Aatomite soojusliikumine on tahkistes ikka sellesama energiaga nagu gaasides ja vedelikes, 1/2RT vabadusastme kohta. Vabadusastmete arv on aga kristallilises kehas üsna keeruliselt määratav suurus ja seetõttu on tahkiste mool-soojusmahtuvus (soojushulk, mis kulub ühe mooli aine temperatuuri tõstmiseks ühe kraadi võrra) raskesti ennustatav. Kindel on, et peaaegu ainuke liikumisvorm on võnkumine. Kõik aatomid võnguvad, kord lähenedes kord kaugenedes, mingi keskmise kauguse ümber. Temperatuuri tõustes võnke-energia, seega võnke-amplituud, suureneb. Amplituud saab aga suureneda põhiliselt sel viisil, et maksimaalne kaugus suureneb, samal ajal kui minimaalne kaugus palju ei vähene. See tähendab, et aatomitevaheline keskmine kaugus suureneb. Makroskoopiliselt väljendub selles tahkiste soojuspaisumine: temperatuuri tõustes tahke keha mõõdud suurenevad. Soojuspaisumine on suhteliselt väike, protsendi murdosa kraadi kohta, kuid muutub oluliseks kui temperatuur tõuseb palju. Näiteks, klaasnõud võivad puruneda, kui neid kuumutada ebaühtlaselt, nii et mõni koht paisub rohkem ja mõni vähem.
Tahkumine ja sulamine
Vedeliku tahkumine tähendab aatomite (molekulide) vaheliste sidemet tugevnemist sedavõrd, et aatomite asukohad üksteise suhtes fikseeruvad. Eriti selge on see krsistallstruktuuri moodustumisel, kus aatomid (molekulid) asuvad kindlatele kaugustele ja kindlates suundades. Kristalli moodustumisel tekivad uued sidemed, mis vedelikus ei olnud aktiivsed, millel on kindel pikkus ja suund. Nende sidemete moodustumisel aatomid üldiselt veelgi lähenevad teineteisele ja vabaneb sidemete moodustumise energia (aatomite lähenemisel vabaneb tõmbejõudude potentsiaalne energia). Seega, tavaliselt on tahkes olekus aine ruumala väiksem kui vedelas ja tahkumisel vabaneb teatud hulk energiat, sarnaselt, nagu energiat vabanes auru (gaasi) kondenseerumisel vedelikuks. Tahkise sulamisel aga vastupidi, neeldub energiat, et lõhkuda kristalli-sidemeid. Niisuguse tahkumis/sulamissoojuse olemasolu on hästi nähtav tahkete kehade soojendamisel kindla võimsusega, näiteks küttes neid kindla voolutugevuse ja pingega elektrienergia abil (võimsus = pinge x voolutugevus). Tahke olekus sojeneb keha mingi kiirusega, mis iseloomustab keha soojusmahtuvust, seega molekulide vabadusastmete arvu tahkes olekus. Sulamistemperatuuri saabudes temperatuuri edasine tõus lakkab ja sama temperatuuri juures hakkab suurenema vedeliku hulk ja vähenema tahkise hulk. Sulamistemperatuuril kogu juurdeantud soojusenergia kulub kristalli-sidemete lõhkumiseks, keha temperatuur ei tõuse. Niisugune konstantsel temperatuuril sulamine on iseloomulik just kristallilistele, tõelistele tahkistele. Amorfsed tahkised, mis tegelikult on väga viskoossed vedelikud, pehmenevad ja muutuvad voolavaks aeglaselt üle laia temperatuurivahemiku, kusjuures ekstra sulamis-soojust on nende puhul peaaegu võimatu märgata: temperatuur tõuseb ühtlase kiirusega kui juurdeantav võimsus on konstantne.
Sulamissoojust saabki mäarata soojushulga järgi, mis tuleb konstantsel temperatuuril lisada, et kogu tahkis sulatada. Jää sulamissoojus on 80 kcal kg-1 (1.44 kcal mol-1 = 6.02 kJ mol-1), mis on tunduvalt vähem kui vee aurumissoojus (550 kcal kg-1 = 9.9 kcal mol-1 = 41.4 kJ mol-1). Jää sulamissoojus on tahkiste hulgas üks suuremaid, näiteks elavhõbedal on see ainult 2.75 kcal kg-1. Isegi arvestades, et elavhõbeda aatomkaal on 80, tuleb tema mool-sulamissoojuseks 220 cal mol-1 , mis on siiski 6.5 korda väiksem kui veel. See vahe on põhjustatud suhteliselt tugevatest sidemetest, mis jääkristallis molekule koos hoiavad.
Peale suhteliselt suure sulamissoojuse on veel veel teisigi omapärasid. Enamik vedelikke rõhu suurenedes tahkestuvad, eriti kui temperatuur on tahketumistemperatuuri lähedal. Jää aga vastupidi, sulab rõhu suurenedes. See tuleb anomaalsest ruumalamuutusest tahkestumisel: nimelt vee ruumala tahkestudes suureneb, vastupidiselt enamusele ainetele (niisamasugused erandid on veel vismut ja antimon. Null kraadi juures on jää ruumala umbes 9% suurem kui vee ruumala. See põhjustabki, et rõhu suurenedes külmumistäpp langeb umbes 1° 130 atm kohta. Uisutaldade all võib rõhk ulatuda kuni 80 kG/(0.2 cm x 10 cm)=40 kG/cm-2. Null kraadi lähedal aitab see jääd sulatada ja muudab sõidu libedamaks, lisaks hõõrdumisel tekkivale soojusele, mis ka jääd sulatab.
Sulamistemperatuur sõltub ka kristallvõre puhtusest. Lisandid langetavad sulamistemperatuuri, seetõttu on metallide sulamite sulamistemperatuur tavaliselt madalam kui puhastel komponentidel. Näiteks seatina ja inglistina segu, mida kasutatakse jootmisel, sulab palju madalamal temperatuuril kui komponendid eraldi võetuna.
Vee omapärad
Kuna vesi/jää on bioloogiliselt tähtsaim keskkond, peatume sellel eraldi. Nagu öeldud, on jää sulamissoojus tunduvalt suurem kui näiteks metallidel, mis näitab kristallsideme suhtelist tugevust. Teiseks, jääkristall on suurem kui sama mass vett, mis näitab, et jääd moodustavad sidemed on pikemad kui vett koos hoidvad sidemed. Vahe pole küll suur, kuupjuur 1.09 = 1.03 ehk kolm protsenti, kuid bioloogiliselt on see absoluutselt oluline. Kui jää oleks vest raskem ja vajuks põhja, külmuksid veekogud põhjani ja talvine vee-elu oleks võimatu või vähemalt nõuaks veelgi radikaalsemaid kohastumisi.
Teame, et vees hoiavad molekule lähestikku Van der Waalsi orientatsioonijõud, mis põhinevad vee molekulide polaarsusel. Ilmselt moodustuvad jääs uued sidemed, mis hoiavad molekule veelgi kõvemini koos, kuid seejuures tõukavad nad omavahel kaugemale kui nad on vees. Ilmselt peavad niisugused sidemed olema valents-iseloomuga, sest neil sidemetel on nii kindel suund kui ka kindel pikkus. Need ongi meile juba tuntud vesiniksidemed, ehk doonor-aktseptorsidemed, mis moodustuvad vee hapniku vaba elektronpaari abil mõne teise molekuli vesinikuaatomi tühja orbitaaliga, millelt elektron on ajutiselt lahkunud hapniku elektronegatiivsuse tõttu. Kokku võib üks vee molekul olla seotud teistega kuni nelja vesiniksideme kaudu. Kaks nendest moodustavad tema enese hapniku kaks elektronpaari (hübridiseerunud 2s- ja 2p-paarid), kaks aga on doneerinud teiste molekulide hapnikud esimese molekuli vesinikele. Huvitav on seejuures see, et kõik vesiniksidemed ei ole ühepikkused, vaid sõltuvad suunast kristallvõres (2.76 ja 1.77 A, sõltuvalt suunast). Niisugused mitmekordsed sidemed kõigi molekulide vahel hoiavadki jää kristallstruktuuri.
Jää sulamisel vesiniksidemed katkevad, selleks vajalik energia ongi sulamissoojus. Ometi ei katke 0°C juures kohe kõik vesiniksidemeid vaid vees säilivad veel suhteliselt suured, mõne kuni mõnekümne molekuli suurused klasterid (mikrokristallid). Samal ajal ei ole need klasterid permanentsed vaid pidevalt ümberorganiseeruvad, ühtede sidemete katkedes ja teiste tekkides. Nende jää-sarnaste klasterite olemasolu tõttu ei ole vee ruumala minimaalne 0° juures, vaid temperatuuri tõustes kahaneb, sest klasterite arv ja ruumala vähenevad. Ruumala saavutab miinimumi (tihedus maksimumi) 4°C juures. Sel temperatuuril ei ole klasterid mitte täielikult kadunud, vaid on saabunud tasakaal kahe protsessi vahel, millest esimene on ruumala vähenemine vesiniksidemete arvu vähenemise tõttu, teine aga ruumala suurenemine molekulide võnkeliikumise amplituudi suurenemise tõttu. Kõrgematel temperatuuridel kui 4°C on ruumala suurenemine ülekaalus, kuidi vesiniksidemeid säilib kuni keemistemperatuurini.
Isolaatorid ja elektrijuhid.
Osa tahkeid aineid ei juhi elektrit. See tähendab, et elektronid on aatomitega (molekulidega) seotud ja ei ole võimelised ühelt aatomilt teisele liikuma. See kehtib ka kristallilise struktuuriga isolaatorite kohta, nagu näiteks teemant.
Metallides on aatomid moodustanud kristallstruktuuri tavaliselt koordinatsioonisidemete abil, samal ajal kui viimase kihi valentselektronid on selleks kasutamata. Need elektronid võivad ema-aatomist lahkuda ja moodustada kristallvõres ühise elektronpilve, nn. elektrongaasi. Elektrongaasi olemasolu näiteks suurendab metallide soojusmahtuvust (lisaenergia 3/2RT kulub elektrongaasi soojendamiseks). Tähtsam aga on, et elektrongaas põhjustab metallide küllaltki hea elektrijuhtivuse. Vastasmõju elektronide ja kristallvõre vahel põhjustab aga elektritakistuse olemasolu. Väga madalatel temperatuuridel (absoluutse nulli lähedal) ulatub iga elektroni lainefunktsioon läbi kogu metalli ruumala ja vastasmõju kristallvõrega kaob. Niisugune seisund on ülijuhtivus. Elektrisignaal levib läbi metalljuhtme valguse kiirusega, nii kiiresti nagu ühest otsast juurdetulnud elektronide elektriväli levib. Samal ajal ei liigu elektronid ise mitte nii kiiresti. Näiteks voolutugevusel üks amper liigub läbi juhtme laeng üks kulon sekundis. Üks kulon on 96500 korda väiksem kui Avogadro arv, seega liigub läbi juhtme ristlõike sekundis 1/96500 mooli elektrone. Kui vaskjuhtme diameeter on 2 mm, siis üks mool vaske (63.5g) moodustab juhtme pikkuse 254 cm. Teades, et sekundis läbib juhet 1/96500 mooli elektrone, leiame, et need liiguvad edasi pikkuse 254/96500 = 0.0026 cm = 0.026 mm võrra sekundis.
BIOENRGEETIKA ALUSED
Rakkude energiaallikaks on elektronide liikumine molekulidelt, millel orbitaalid on kõrgema energiaga (tuumadest kaugemal) molekulidele, millel orbitaalid on madalama energiaga (tuumadele lähemal). Elektroni ülekandereaktsioone nimetatakse redoks-reaktsioonideks ja need on organismi primaarseks energia-allikaks. Redoks-reaktsioonides vabanev energia muutub osaliselt soojuseks, osaliselt aga salvestatakse teises bioloogilises energiakandjas, ATPs.














