PRKL1X1 (729538)

Файл №729538 PRKL1X1 (Расчет стержневых систем и бруса на растяжение, Расчет нагруженной балки, Экзаменационные вопросы по прикладной механике)PRKL1X1 (729538)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БИЛЕТ 5 Изгиб. Дифф. зав-ти при изгибе.

dM = Q • dz, Q = dM / dz, dQ / dz = d2M / dz2 = q.

производная от изгибающего момента по абсциссе сечения балки равна поперечной силе (теорема Журавского); вторая производная от изгибающего момента по абсциссе сечения балки равна интенсивности распределенной нагрузки.

БИЛЕТ 6 Основные гипотезы при изгибе.

Принцип Бернулли: плоские сечения до и после деформации остаются плоскими, нормальными к продольной оси балки.

БИЛЕТ 12 Косой изгиб. Определение напряж.

БИЛЕТ 14

Напряженное состояние в данной точке - совокупность напряжений на всех елементарных площадках, которые можно провести через какую-либо точку тела. Главные нормальные напряжения - если на грани кубика других нет (касательных напряжений). Тензор напряжения - перемещения при данной нагрузке ???

Закон парности касательных напряжений.

Дан брус произвольного сечения.

A - площадь сечения по нормали

Aa - площадь сечения под углом a к нормали. Aa= A / cos a.

проекция сил на направление sa :

sa•Aa – s1•A•cos a = 0

sa = s1 cos2 a

проекция сил на направление ta :

ta•Aa – s1•A•sin a = 0

ta = 1/2 s1 sin 2a

для BD:

sb = s1 • cos2 (a+/2)= s1 • sin2 a

tb = 1/2 •s1 • sin 2(a+/2) = – 1/2 •s1 • sin 2a.

sa+ sb = s1; ta = – tbз-н парности касат. напряж.).

Из этого закона следует, что :

при a = 90° sa = 0, ta= 0; при a = 0 sa = samax = s1, ta= 0; при a = 45° ta= tamax= s1 / 2.

БИЛЕТ 15 Плоское напряженное состояние.

з-н Гука для одноосного напряженного состояния :

e = s / E; e = Dl / l - относительное удлинение

E [Па, МПа]- модуль продольной упругости (а также : модуль упругости I рода, модуль Юнга).

s [Па, МПа] - напряжение.

= m e; e¢ - относит. поперечная деформация.

m - коэфф-нт поперечной деформации (Пуассона).

обобщенный з-н Гука для плоского напряженного состояния :

e1 = s1 / E – m•s2 / E

e2 = s2 / E – m•s1 / E.

находим напряжения s1 и s2 :

s1 = E (e1 + m•e2) / (1– m2), s2 = E (e2 + m•e1) / (1– m2).

БИЛЕТ 16 З-н Гука для изотропного материала.

Изотропный материал - материал, свойства которого одинаковы во всех направлениях.

Для объемного напряженного состояния :

e1 = (1 / E) •[s1 – m•(s2 + s3)],

e2 = (1 / E) •[s2 – m•(s3 + s1)],

e3 = (1 / E) •[s3 – m•(s1 + s2)].

Объем кубика 1´1´1 после деформации :

V = (1+e1) ´ (1+e2) ´ (1+e3) » 1+ e1 +e2 +e3.

Относительное изменение объема :

u = e1 +e2 +e3 = (1–2•m) •(s1+s2+s3 ) / E. Отсюда : коэфф-нт Пуассона m не может быть больше 1/2.

з-н Гука при сдвиге : t = G•g

g - угол сдвига [рад]

G [Па]- модуль сдвига (модуль упругости 2 рода).

G = E / [2•(1+m)]

удельная деформация при чистом сдвиге :

u = t2 / (2•G)

БИЛЕТ 17 Теории (гипотезы) прочностей.

Эквивалентое напряженное состояние - состояние, равноопасное данному сложному напряженному состоянию, но при одноосном растяжении (сжат.).

I-я гипотеза прочности - гипотеза наибольших нормальных напряжений :

“предельное состояние материала при сложном напряженном состоянии наступает тогда, когда наибольшее нормальное напряжение достигает предельного напряжения [s] при одноосном напряженном состоянии”. I-я гипотеза устанавливает критерий хрупкого разрушения (не для пластичных материалов). Если материал имеет различные [s] на растяжение и сжатие, то :

max sр £ [sр], max sс £ [sс].

II-я гипотеза прочности - гипотеза наибольших линейных деформаций :

Опыты не подтверждают эту теорию.

III-я гипотеза прочности - гипотеза наибольших касательных напряжений :

“прочность материала при сложном напряженном состоянии считается обеспеченной, если наибольшее касательное напряжение не превосходит допускаемого касательного напряжения, установленного для одноосного напряженного состояния”. tmax = tэкв £ [t].

Из закона парности касательных напряжений :

tmax = s /2 при a = 45° a - угол между нормалью и сечением на котором определяем t.

БИЛЕТ 18

Гипотеза теории кручения (гипотеза плоских и жестких сечений): расстояния между нормальными сечениями при кручении не изменяются, не изменяются размеры сечений.

Кручение бруса круглого поперечного сечения.

Касательные напряжения при кручении :

t = M•r / Ip . r - расстояние от центра сечения.

M - приложенный момент. r - радиус сечения.

tmax = M•r / Ip = M / Wp £ [t].

Wp - полярный момент сопротивления.

Для круглого сплошного сечения радиусом r:

Wp = Ip / r = pd4 / (32•d/2) = pd3 /16 » 0,2•d3.

Деформации и перемещения :

dj / dz = M / (G•Ip) - выведено в билете 19

Производная угла закручивания (взаимн. пов.) :

dj = M•dz / (G•Ip). Деформация вала на длине z (взаимный угол поворота сечений) :

j = ò!от0доz! [M•dz / (G•Ip)].

Величина G•Ip - жесткость вала при кручении.

Для вала длиной l: j = M•l / (G•Ip).

Относительный угол закручивания - угол закручивания на единицу длины :

g = j / l = M / (G•Ip).

Условие прочности: g £ [g]; [g] - в ° / на 1м длины.

Зависимость t от угла закручивания :

g = r•dj / dz из рисунка билета 19.

з-н Гука при сдвиге : t = G•g, Þ :t = Grdj / dz.

БИЛЕТ 19 Кручение, вывод рассчетн. ф-лы для

касательных напряжений.

gmaч = r•dj / dz, аналогично g = r•dj / dz.

з-н Гука при сдвиге : t = G•g, отсюда :

t = G•r•dj / dz. При кручении деформации сдвига прямо пропорциональны расстоянию от центра тяжести сечения.

Равнодействующий момент касательных напряжений в сечении : M = Aò (t•r)•dA; (t•r)•dA - элементарный крутящий момент внутренних сил на площадке dA.

M = G•dj / dz Aò (r2)•dA.

Полярный момент инерции сечения : Ip = Aò (r2)•dA.

dj / dz = M / (G•Ip); t = Mr / Ip .

Условие прочности.

tmax = M•rmax / Ip = M / Wp £ [t].

Wp - полярный момент сопротивления.

Для круглого сечения радиусом r: Wp = Ip / r.

БИЛЕТ 20 Кручение, вывод ф-лы для

относительного угла закручивания.

переписать билет 19 до ф-лы : dj / dz = M / (G•Ip) и раздел “Деформации и перемещения.” билета 18.

БИЛЕТ 21 Внецентренное растяжение.

В любом поперечном сечении стержня возникает продольная сила N=F и изгибающие моменты :

Mx = F•yF , My = F•xF . Напряжение в точке (x,y) :

s = N / A + Mx•y / Ix + My•x / Iy .

Максимальные напряжения на угловых точках :

s = N / A ± Mx / Wx ± My / Wy .

Wx , Wy - моменты сопротивлений .

A - площадь сечения.

По рисунку - наибольшие напряжения - в точке E :

sE = N / A + Mx / Wx + My / Wy .

Алгебраически наименьшие напряж. - в точке D :

sD = N / A – Mx / Wx – My / Wy .

Условие прочности :

N / A + Mx / Wx + My / Wy £ [s].

В плоскости нулевой линии напряжение равно 0.

Уравнение нулевой линии (x,y - координаты) :

N / A + N•yF•y / Ix + N•xF•x / Iy = 0; или :

xF•x / i2y + yF•y / i2x + 1 = 0; или :

x / a + y / b = 1, a = – i2y / xF , b = – i2x / yF .

a, b - отрезки на осях координат x, y.

Радиус инерции сечения : ix = Ö(Ix / A), iy = Ö(Iy / A),

размерность - длина (обычно сантиметр).

В центре тяжести сечения s = N / A = F / A.

Для прямоугольного сечения :

Ix = b•h3 / 12, Iy = b3•h / 12, Wx = 2•Ix/h, Wy = 2•Iy / b

Wx = b•h2 / 6, Wy = b2•h / 6; сторона bççоси x, h çç y.

Напряжение в точке (x,y) :

s = N / A + Mx•y / (b•h3 / 12) + My•x / (b3•h / 12) =

= N / A + N•yF •y / (b•h3 / 12) + N•xF •x / (b3•h / 12).

Максимальные напряжения на угловых точках :

s = N / A ± Mx / (b•h2 / 6) ± My / (b2•h / 6) =

= N / A ± N•yF / (b•h2 / 6) ± N•xF / (b2•h / 6).

БИЛЕТ 22 Изгиб с кручением бруса кругл. сеч.

От изгиба в точках C и D: smax = M / WX;

от кручения по контуру сечения:

t max = T/WP = T / (2•WX).

Напряженное состояние в точке C :

Главные напряжения: s1=smax = (s + Ö(s2 + 4t2)) /2.

s3=smin = (s – Ö(s2 + 4t2)) /2.

По 3-й гипотезе прочности : s1 – s3 £ [s];

Ö(s2 + 4t2) £ [s]; Ö(M2 + T2) / WX £ [s]; отсюда :

проектный расчет: WX = Ö(M2 + T2) / [s]; если изгиб

в 2-х ^-ных плоскостях, то: M = Ö(M2X + M2Y).

БИЛЕТ 23 Ф-ла Эйлера для сжатого стержня

большой гибкости.

Основной случай продольного изгиба

(закрепление на 2-х опорах, неподв. и подв.) :

Критическая сила - FКР : наименьшаяая сила, при которой стержень теряет способность сохранять прямолин. форму.Предел пропорциональности sпц :

напряжение “до” которого деформация происходит по закону Гука.

Пусть потеря устойчивости происходит при напряжениях, меньших предела пропорцион-ности sпц материала стержня. Тогда - упругая линия :

1/r » d2u / dz2 = M / (EJ); 1/r - кривизна. M = FКР•u.

Уравнеие изогнутой оси: d2u / dz2 = – FКР•u / (EJ).

заменим: k2 = F / (EJmin) [при потере устойчивости попереч. сечения поворач-ся вокруг главной оси с минимальным моментом инерции Jmin ], тогда :

u² + k2•u = 0; реш.ур.: u = C•cos (k•z) + D•sin(k•z).

Определение C и D из условий опор балки : 1) при z = 0,u = 0;2) при z = l, u = 0. Þ С = 0, D•sin(k•z)=0.

D = 0 не подходит т.к. нет прогиба балки Þ sin(k•z)=0; Þ k = np / l, Þ FКР = p2•Jmin•E•n2 / l2 .

наи<ее значение FКР - при n = 1. FКР = p2EJmin / l2 .

u = D•sin (p • z / l) - изгиб с одной полуволной.

Для любого способа закрепления концов балки в ф-ле l заменим lприв = m • l. lприв - приведенная длина

m - коэффициент приведения длины.

БИЛЕТ 24 Ф-ла Эйлера для критич. напряж.

Нормальное напряжение в поперечном сечении сжатого стержня, соответствующее критическому значению сжимающей силы, наз-ют критическим.

sкр = Fкр / A, A - площадь сечения.

Формула Эйлера: FКР = p2•E•Jmin / l2 .

sкр = p2 • E • Jmin / [(m • l)2 • A]; Jmin / A = i2min .

Радиус инерции сечения : ix = Ö(Ix / A), iy = Ö(Iy / A),

размерность - длина (обычно сантиметр).

sкр = p2 • E • i2min / [(m • l)2] = p2 • E / (m • l / imin)2 .

m • l / imin = l - гибкость стержня : безразмерная величина,показ-ая сопротивл-ть потере устойч-ти,

зависит от геометрич. характеристик стержня.

sкр = p2 • E / l2 . Пределы применимости формулы:

Ф-ла Эйлера справедлива лишь в пределах применимости з-на Гука, т.е. при усл., что критическое напряж. не превыш. предела пропорциональности материала стержня.

sкр £ sпц , p2 • E / l2 £ sпц , l ³ p • Ö(E / sпц) = lпред .

lпред - предельная гибкость (граничная гибк.): не зависит от размеров,зависит от свой-в материала.

Ф-ла Эйлера применима, когда гибкость стержня ³ предельн. гибк-ти для материала стержня:l ³ lпред .

В случае неприменим-ти ф. Эйлера напряжения опред. по эмпирическим ф-лам sкр = a – b•l , a и b - коэфф-ты, определяемые опытным путем.

Стержни гибкости : 1. большой (l ³ lпред) - по ф. Эйлера 2. средней (l0 £ l < lпред) - по эмпирич. ф-ле. 3. малой (l < l0)-расчет не на устойчив., а на проч.

БИЛЕТ 25 Напряжение при движении с ускорен.

Груз весом G поднимают вверх с ускорением a.

Определить напряяжение в канате.

sd - динамическое напряжение, A - площадь сечен.

sst = G / A - напряжен. при статич. действии груза.

Kd - динамический коэффициент

sd•A – G•(1+ a / g ) = 0, sd = G / A•(1+ a/g) = sst•Kd.

Kd = (1+ a/g).

Экзаменационные вопросы по

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7041
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее