146293 (729504), страница 2
Текст из файла (страница 2)
9.2. Объемная схема редуктора
Р
Как указывалось ранее, с целью уменьшения объема расчетов студентам допускается рассматривать только одно выбранное направление вращения валов частореверсируемого редуктора.
ассчитывая частореверсивный привод, поэтому рассматривается две объемные схемы редуктора с направлениями действующих сил. На рисунке 9.3,а приведена схема при вращении входного вала против часовой стрелки, а на 9.3,б – при вращении входного вала по часовой стрелке.9
Объемные схемы редукторов по схемам 1…5 приводов приведены на рисунках 9.9,а…9.13,а, соответственно, а для схемы 7 привода на рисунке 9.14,а. На рисунке 9.15,а приведена объемная схема редуктора по схеме 1 привода с другим расположением входного и выходного концов валов редуктора. В схемах 5 и 6 возможно также изменение положения червячной и цилиндрической передач внутри корпуса относительно выходного конца вала редуктора.
.3 Реакция опор, вращающие и изгибающие моменты быстроходного вала.
Конструкция узла вала-червяка выполнена по варианту, изображенному на рисунке 9.2,а. Левая опора содержит два конических роликовых подшипника, поставленных "враспор" и воспринимающих все осевые силы. В этом случае расчетная точка левой опоры А балочки-вала принимается в середине между подшипниками. Правая опора является "плавающей" и содержит один радиальный шариковый подшипник. При этом расчетная точка Б правой опоры балочки-вала принимается в середине подшипника. Требуемые расчетные расстояния берутся из эскизного проекта редуктора: l1=112мм; l2=98мм; l3=98мм.
Р
Часто в приводах по схемам 1,2,3 и 7 быстроходные валы установлены на двух радиальных шарикоподшипниках, расположенных в опорах А и Б. Расчетные точки опор балочки-вала принимаются в середине подшипников, а расчетные расстояния l1, l2 и l3 берутся из разработанных эскизных проектов редукторов. При этом радиальные реакции в опоре и изгибающие моменты валов рассчитываются аналогично рассматриваемому быстроходному валу.
асчетные конструктивные схемы вала-червяка, с учетом объемных схем редуктора, приведены в верхней части рисунков 9.4. а и в. При этом рисунок 9.4,а соответствует вращению быстроходного вала против часовой стрелки, а 9.4,б – по часовой.
9
Для схемы 4 привода конструктивная схема быстроходного вала приведена на рисунке 9.12,б. Реверсивность привода не влияет на величины суммарных реакций в опорах и величины изгибающих моментов в этом валу. Поэтому реверсивность не учитывается в расчетах на прочность этого вала и долговечность его подшипников.
Рекомендуется также использовать соединительные упругие муфты с резиновой звездочкой и с упругой оболочкой.
.3.1. Входной вал редуктора соединяется с валом электродвигателя муфтой упругой втулочно-пальцевой. [4]
Муфта вследствии неизбежной несоосности соединяемых валов нагружает входной вал дополнительной силой FM.
г
Направление силы FM зависит от погрешностей монтажа и заранее его определить нельзя. В этом случае определение наиболее неблагоприятных величин радиальных реакций каждой из опор вала осуществляется следующим образом. Первоначально определяются результирующие реакции в опорах вала от силы в зацеплении колёс, а затем эти реакции арифметически суммируются с определенными отдельно реакциями в опорах А и Б вала от силы FM.
де Т1 – в Н·м
9.3.2. Реакция в опорах быстроходного вала.
Для определения реакция опор и эпюр моментов балочку-вал (рис. 9.4.) рассматривают в двух взаимно перпендикулярных плоскостях YOZ и XOY, в которых лежат составляющие силы в зацеплении.
9.3.2.1. При вращении входного вала против часовой стрелки. (рис. 9.4,а)
-
В плоскости YOZ
Проверка ∑FZ = 0;
711-911+200=0
Реакции найдены правильно.
б) В плоскости XOY
Проверка ∑FZ = 0;
285,2-585+282,5=0
Реакции найдены правильно.
в) Результирующие радиальные реакции опор от сил в зацеплении.
г) Реакции от силы FM
Реакции найдены правильно.
д) Суммарные радиальные реакции в опорах.
е) Суммарная внешняя осевая нагрузка.
F
Для привода по схеме 4 и других схем с установкой быстроходного вала на двух радиально-упорных подшипниках (табл. 9.2.) далее определяют осевые составляющие Si от радиальных нагрузок и общие осевые нагрузки Rai на опоры. При этом расчет Si и Rai аналогичен пунктам 9.6.2.1, д и е данного расчета, с использованием таблицы 9.2.
Для привода по схемам 1, 2, 3 и 7 с быстроходными валами, установленными на двух радиальных шарикоподшипниках, осевых составляющих Si от радиальных нагрузок нет. Суммарная внешняя осевая сила Fa∑, в зависимости от её направления и схемы установки подшипников ("враспор" или "врастяжку"), действует как результирующая осевая (RaA или RaБ) на один из подшипников опор. То есть Fa∑= RaA или Fa∑= RaБ и расчет пункта ж) не производится.
a∑=Fa1I=2503 H
ж) Общие радиальные и осевые нагрузки на подшипники 1 и 2 опоры А.
Подшипники конические радиально-упорные № 7207 и Ке = 0,83, а по таблице П7 [3] е=0,37
Внешняя нагрузка Fa∑ направлена влево, что соответствует схеме нагружения "а" по таблице 9.3. Далее определяем условия нагружения. Так как
Fa∑=2503 Н > 0,83·е·
0,83·0,37·1029=316 Н,
то это соответствует II случаю нагружения, то есть
9.3.2.2.При вращении входного вала против часовой стрелки. (рис. 9.4,а)
а) В плоскости YOZ
Проверка ∑FZ = 0;
711-911+200=0
Реакции найдены правильно.
б) В плоскости XOY
Проверка ∑FZ = 0;
285,2-585+282,5=0
Реакции найдены правильно.
в) Результирующие радиальные реакции опор от сил в зацеплении.
г) Реакции от силы FM
Реакции найдены правильно.
д) Суммарное радиальные реакции в опорах.
е) Суммарная внешняя осевая нагрузка.
Fa∑=Fa1I=2503 H
ж) Общие радиальные и осевые нагрузки на подшипники 1 и 2 опоры А.
Подшипники конические радиально-упорные № 7207 и Ке = 0,83, а по таблице П7 [3] е=0,37
Внешняя нагрузка Fa∑ направлена вправо, что соответствует схеме нагружения "б" по таблице 9.3. Далее определяем условия нагружения. Так как
Fa∑=2503 Н > 0,83·е·
0,83·0,37·1029=316 Н,
то это соответствует II случаю нагружения, то есть
9.3.3. Построение эпюр изгибающих моментов (рис 9.4.).
9.3.3.1. При вращении входного вала против часовой стрелки (рис 9.4,а).
а) Плоскость YOZ
Сечения А и Б – МАХ=0; МБХ=0
Сечение III слева – MIIIX =
711·98·10-3=69,7 Н·м
Сечение III справа – MIIIX =
200·98·10-3=19,6 Н·м
б) Плоскость ХOZ
Сечения А(II) и Б – МАZ=0; МБZ=0
Сечение III – MIIIZ =
282,5·98·10-3=27,7 Н·м
в) Нагружение от муфты
Сечения Б и Ж – МБМ=0; МЖМ=0
Сечение А(II) – МАМ=
168·112·10-3=18,8 Н·м
Сечение III – MIIIМ =
96·98·10-3=9,4 Н·м
г) Максимальные изгибающие моменты в сечениях II и III
МII=МАМ=18,8 Н·м
9.3.3.2. При вращении входного вала по часовой стрелки (рис 9.4,б).
а) Плоскость YOZ
Сечения А и Б – МАХ=0; МБХ=0
Сечение III слева – MIIIX =
200·98·10-3=19,6 Н·м
Сечение III справа – MIIIX =
711·98·10-3=69,7 Н·м
б) Эпюры от изгибающих моментов в плоскости YOZ и ХOZ от нагружения муфтой при изменении направления вращения вала сохраняются. Так же сохраняются максимальные изгибающие моменты в сечениях II и III.
-
Расчет подшипников быстроходного вала.
9.4.1. Эквивалентная радиальная нагрузка.
X и Y – коэффициент, учитывающий разное повреждающее действие радиальной и осевой нагрузок (по таблице 9.18 [3] и таблицам параметров подшипников);
V – коэффициент вращения ( V=1 при вращении внутреннего кольца относительно направления нагрузки V=1,2 при вращении нагруженного кольца);
Кб – коэффициент безопасности, учитывающий динамическую нагрузку (по таблице 9.19 [3] в зависимости от области применения привода, характера пиковых нагрузок и их величины);
КТ=1 – температурный коэффициент при t < 100 (при повышенной рабочей температуре подшипников по таблице 9.20 [3]);
V
Коэффициент Кб =1,3…1,8 для редукторов всех конструкций с зубчатыми передачами 7-й и 8-й степеней точности. В курсовом проекте строго не оговаривается область применения редуктора.
=1 – для всех подшипников редукторов по схемам 1…7.
П
Для схем 1, 2, 3 и 7, в которых в опорах А и Б установлены по одному радиальному шарикоподшипнику, определение эквивалентных нагрузок и долговечности подшипников аналогична пунктам 9.10. данного расчета.
Для схемы 4 и других схемах, в которых в опорах А и Б установлены по одному коническому радиально-упорному подшипнику, определение эквивалентных нагрузок и долговечности подшипников аналогична пунктам 9.7. данного расчета.
ринимаем Кб =1,8 с учетом















