145844 (728841), страница 2
Текст из файла (страница 2)
Для бескорпусной защиты полупроводниковых структур используются в основном неорганические и органические полимерные материалы. Более высокой надёжностью характеризуются покрытия из неорганических материалов, однако, бескорпусная защита на основе органических материалов гораздо дешевле.
Если в процессе эксплуатации или хранения полупроводниковых приборов требуется защита, обеспечивающая их работоспособность в течении промежутка времени, то в этом случае рекомендуется применять корпусную герметизацию. Причём корпуса должны отвечать следующим основным требованиям: обладать достаточной механической прочностью и коррозионной стойкостью; иметь минимальные размеры; обеспечивать чистоту среды, окружающей полупроводниковый прибор; позволять легко и надёжно выполнять электрическое соединение между полупроводниковым приборами печатной платы, на которую устанавливается полупроводниковый прибор; обеспечивать минимальные паразитные ёмкости и индуктивности конструкции; обеспечивать надёжную изоляцию между токопроводящими элементами; быть герметичными и предотвращать проникновение влаги к защищаемой микросхеме; обеспечивать минимальное тепловое сопротивление между полупроводниковой структурой и окружающей средой ; защищать от воздействий электромагнитного поля и радиоактивного излучения; обеспечивать возможность автоматизации процесса сборки; иметь минимальную стоимость.
Защита поверхности p-n-переходов лаками и эмалями
Защищают p-n-переходы от внешних воздействий тонкими слоями специальных лаков и эмалей, наносимых на место выхода перехода на поверхность. Покрытие плотно сцепляется с поверхностью полупроводника и предотвращает доступ водяных паров, кислорода и др. Достоинством метода является его простота и технологичность.
Защита p-n-переходов методом лакировки имеет ряд недостатков. К основным из них следует отнести то, что применяемые в настоящее время лаки не отвечают требованиям, предъявляемым полупроводниковой технологией : недостаточно влагостойки, плохо переносят резкое изменение температуры окружающей среды, растрескиваются или отслаиваются при низких температурах.
Кроме перечисленных недостатков, следует отметить еще один важный недостаток лаков- их способность создавать в приповерхностном слое полупроводника значительные механические напряжения, что объясняется разными коэффициентами термического расширения лака и полупроводникового материала. Таким образом, качество защиты p-n-переходов и свойства лакированных приборов зависят от свойств лаков.
В качестве исходных материалов для лаков используются кремнийорганические смолы, обладающие высокой влагостойкостью и хорошими диэлектрическими свойствами. Однако чистые кремнийорганические лаки имеют ряд недостатков ( трескаются при низких температурах, недостаточно сцепляются с полупроводниками, хрупки) , которые устраняют введением модифицирующих добавок и специальных наполнителей. Некоторые свойства наиболее употребительных лаков и эмалей приведены в таб. 26. При выборе защитного покрытия ( лака или эмали ) необходимо исходить из эксплуатационных требований, которые предъявляют к конкретному полупроводниковому прибору.
Важным фактором при защите p-n-переходов лаков является чистота лакируемой поверхности, которая должна быть тщательно протравлена, промыта и высушена. После сушки p-n-переходы переносят в специальных вакуумных эксикаторах в скафандры, в которых носят лак на поверхность кристалла. При нанесении лакового покрытия лак набирают в шприц и осторожно небольшими порциями выдавливают на поверхность полупроводникового кристалла. Для покрытия круглых структур применяют различные полуавтоматические приспособления. Сушат лак в специально выделенных термостатах. Режим сушки зависит от вида лака или эмали, а также типа прибора.
Лак К-1 — довольно густая, почти прозрачная масса вязкостью 80–100 сСт при 20 С. Плёнка этого кремнийорганического лака после полимеризации при 130–150 С в течение не менее 4 ч почти прозрачна и удовлетворительно переносит термоциклирование. Термостойкость около 200 0С. Применяют лак К-1 в основном для защиты сплавных кремниевых p-n-переходов. Наносят лак иглой шприца или тонкой стальной проволокой, окуная ее в тигелек с лаком. При нанесении лак не полностью переходит с иглы ( или проволоки ) на кристалл, что приводит к утолщению ее кончика, которое удаляют, протирая иглу миткалем, смоченным в спирте.
Лак К-55 –густая прозрачная вязкая масса желтоватого цвета, приготавливаемая из полиорганосилоксановой смолы. Защитная пленка образуется на поверхности полупроводникового кристалла после обработки при 130-1500С в течении 2-3 ч. Удельное объемное сопротивление пленки при 200С равно 1013 Омсм, а при 200 0С-1012Омсм. После пребывания пленки в атмосфере с повышенной влажностью ( 98%) ее объемное сопротивление снижается до 1011 Омсм. Термостойкость 150-1800С.
Лак К-57 –прозрачная вязкая масса светло-желтого цвета.Время высыхания пленки лака при температуре 2000С равно 1-1,5 часа. Удельное сопротивление при 200С равно 1014 Омсм, а при 2000С –1012Ом см. Термостойкость 180-2000С. Пленка обладает высокой влагостойкостью и стойкостью к термоциклическому изменению температуры. Рекомендуемый режим сушки: выдержка 10 часов при 150-1700С.
Лак МК-4У –вязкая масса желтого цвета. Связующим веществом является кремнийорганическая смола , модифицированная полиэфирами и эпоксидными смолами, а в качестве наполнителя в смолу вводиться слюда мусковит. Рекомендуемый режим сушки: выдержка 2 ч при 1800С. Удельное объемное сопротивление при 200С равно 1014 Ом*см. Термостойкость 180-2000С.
Защитный лак ПЭ-518 – терефталевоглицириновой смолы ТФ-4 в циклогексане; прозрачная жидкость от светло- до темно-жёлтого цвета. Обладает термостойкостью в диапазоне температур от –60 до +100С. Тангенс угла диэлектрических потерь на частоте 106 Гц равен 0,04. Удельное объёмное сопротивление равное в обычных условия 1014 Ом*см, после пребывание во влажной среде атмосфере в течении 48 часов снижается до 1012 Ом*см. Применяется для защиты p-nпереходов от воздействия влаги и воздуха.
Защитный лак КО-938В — раствор кремнийорганической смолы и толуола, модифицированный полиэфиром; жидкость коричневого цвета. Перед употреблением в лак добавляют сиккатив. Содержание сухого остатка равно 50%. Плёнка высыхает при 150 С в течение 30 мин. Адгезионная прочность 8*104 Н/м2. Электрическая прочность при 20 С равна 75 кВ/мм, при 200 С — 40 кВ/мм, а после воздействия влажной атмосферы в течении 48 часов —50 кВ/мм. Удельное объёмное электрическое сопротивление при 20 С равна 1014 Ом*см, а при 200 С — 1012 Ом*см. Диэлектрическая проницаемость на частоте 106 Гц при 20 С равна 4, а тангенс диэлектрических потерь при тех же условиях – 6*10-4 . Применяется для защиты p-n-переходов полупроводниковых приборов, работающих при температурах до 200 С, а также в качестве адгезионного подслоя для эластичные заливочные компаунды.
Кремнийорганический лак КО-961-п — раствор полиметилвинилфенолсилоксилазана в толуоле; бесцветная или светло-жёлтая жидкость без механических примесей. Содержание сухого остатка не привышает 57-63%. Плёнка высыхает при 20 С в течение 60 минут. Электрическая прочность при 20 С равна 85 кВ/мм, а при 150 С — 5 кВ/мм. Удельное объёмное сопротивление при 20 С равно 1014 Ом*см, а при 150 С — 1012 Ом*см. Покрытия обладают хорошей влагостойкостью и высокими диэлектрическими характеристиками. Тангенс угла диэлектрических потерь – 0,003. Диэлектрическая проницаемость 4,5. Лак легко воспламеняется: нижний температурный предел воспламеняемости насыщенных паров в воздухе 8 С, а верхний 36 С. Предельно допустимая концентрация раров лака в воздухе составляет 10–20 мг/м3.
Лак сульфон —раствор полисульфонамида на основе изофталеновой кислоты и 3,3-диаминодифенисульфона в диметилацетамиде или диметилформамиде; жидкость желтоватого цвета. Содержание сухого остатка не превышает 15%. Удельное объёмное сопротивление при 20 С равно 1014 Ом*см , при 200 С — 1012 Ом*см, а при 48-часовом воздействии влаги (95%) и 55 С — 1013 Ом*см. Электрическая прочность при 20 равна 50 кВ/мм. Тангенс угла диэлектрических потерь на частоте 103 Гц при температуре 20 С равен 0,02, а диэлектрическая постоянная при тех же условиях – 4. Применяется для защиты p-n-переходов полупроводниковых приборов, работающих в интервале температур от –60 до +200 С.
Лак «Пан» — 5%-ный раствор полинитрилоакрилата в диметилформамиде; прозрачная жидкость жёлтого цвета без механических примесей. Вязкость при 20 С равна 80–150 сСт. Показатель преломления 1,43–1,44.
Эмаль АС–539 —суспензия пигмента свинцового сурика в растворе эпоксидной смолы, ярко-оранжевого цвета. Разбавляется ксилолом. Вязкость при 20 С равна 90–100 сСт. Содержание сухого остатка 25%. Тангенс угла диэлектрических потерь на частоте 1МГц и температуре 20 С не превышает 0,025. Плёнка высыхает при 18-23 С в течение 1 ч, а при 130 С – 4 ч. Удельное объёмное сопротивление при 20 С равно 5*1014 Ом*см, а после пребывания во влажной атмосфере (98%) в течение 48 часов снижается до 1013 Ом*см. Электрическая прочность 20 кВ/мм. Влагонабухаемость плёнки в течение 48 часов при 18-23 С не превышает 1%. Эмаль устойчива к перепаду температур от –60 до + 125 С . Применяется для защиты полупроводниковых приборов и кристаллов с p-n-переходов от внешних воздействий в интервале температур от –60 до +150 С.
Эмаль КО-97— смесь кремнийорганического лака ФМ-34 и смолы БКМ-5 с добавлением пигментов и наполнителей. Вязкость при 20 С равна 80-100 сСт. Содержание сухого остатка не превышает 48-58%. Удельное объёмное сопротивление при 20 С равно 1014 Ом*см, а при 170 С — 1012 Ом*см, а после пребывания во влажной атмосфере снижается до 1011 Ом*см. Тангенс угла диэлектрических потерь на частоте 1 МГц при 20 С равен 0,01, а при 170 С повышается до 0,015. Диэлектрическая проницаемость при тех же условиях соответственно равна 3,5 и 5,5. Влагонабухаемость не превышает 1%. Электрическая прочность 20 кВ/мм. Эмаль устойчива к перепаду температур от –65 до +150 С.
Эмаль ЭП-274 — суспензия пигментов в эпоксидном лаке ЭП-074. Для разбавления применяется смесь, содержащая 30% ацетона, 30% этилцеллозольва и 40% ксилола. Вязкость 80-100 сСт. Время высыхания плёнки при 150 С равно 1 ч. Содержание сухого остатка лежиит в пределах от 35 до 45%. Применяется для окраски полупроводниковых приборов, эксплуатирующихся в условиях тропического климата, и выпускаются в двух цветов: серого и черного.
Эмаль РПЭ-401 — смесь кремнийорганического лака ФМ-ЗУ и раствора смолы БМК-5 в соотношении 5:1, в которую добавляют наполнители: 20% рутила, 20% кварца, 30% слюды и 30% талька. Плёнка высыхает при 200 С в течение 5 часов. Удельное объёмное сопротивление при 20 С равно 1014 Ом*см, при 200 С — 1012 Ом*см, а после выдержки во влажной атмосфере (98%) – 2,8*1013 Ом*см.
Эмаль ЭС-50 — кремнийорганическая смола модифицированная телиэфирами и эпоксидными смолами, в которую в качестве наполнителя вводится рутил. Плёнка высыхает при 180 С в течение 2 часов. Удельное объёмное сопротивление при 20 С равно 1014 Ом*см, при 200 С — 1012 Ом*см, а после выдержки во влажной атмосфере (98%) – 109 Ом*см.
Компаунды МБК-1 и МБК-3 — высокомолекулярные полимерные соединения с добавкой химически активного компонента – отвердителя, широко применяемые для защиты германиевых p-n-переходов. Перед использованием компаунды вакуумируют – обрабатывают под вакуумом. Плёнка компаунда МБК-1 после полимеризации в течение 10-12 часов при температуре 80-100 С твёрдая, а компаунда МБК-3 эластичная, поэтому устойчивость компаунда МБК-3 к термоциклам значительно выше. Термостойкость компаундов невысока — около 150 С. Удельное объёмное сопротивление компаунда МБК-3 —1012-1013 Ом*см. Компаунды обладают хорошей адгезией к германию и удовлетворительной влагостойкостью. Тангенс угла диэлектрических потерь при частоте 50 Гц и температуре 20 С равен 6*10-2 — для МБК-1 и 5*10-2 — для МБК-3. Диэлектрическая проницаемость при тех же условиях соответственно равна 3,3 и 4. Электрическая прочность лежит в пределах 15–25 кВ/мм при толщине плёнки 1-1,5 мм температуре 20 С.
Компаунды ГК и ГКН — предназначены для пассивации и защиты p-n-переходов полупроводниковых приборов, работающих при температурах от –60 до +220 С. По внешнему виду компаунд ГК (Г– гидридсодержащий, К– компаунд) — бесцветная мутная, а компаунд ГКН (Н – с наполнителем) светло-серая жидкость.
Плёнка компаундов после полимеризации — выдержке при комнатной температуре 20 ч, а затем при 110 С – 2 ч и при 150 С не менее 5 ч – эластичная. Удельное объёмное сопротивление при 20 С соответственно равно 1014 и 1015 Ом*см. Тангенс угла диэлектрических потерь на частоте 106 Гц равен 3*10-3, а диэлектрическая проницаемость на той же частоте –3,5. Электрическая прочность 25 кВ/мм.
Эпоскидные смолы.
Эпоксидными смолами называются олигомеры и полимеры,: СН—СН содержащие в микромолекуле эпоксидные группы \ / ,,
Эпоксидные смолы представляют собой группу искусственных смол,» получаемых в результате реакции хлорированных глицеринов;
с двухатомными или многоатомными фонолами в щелочной среде, Обычно для получения эпоксидных смол используют эпихлоргидрин или дихлоргидрин глицерина с резорцином или дифенилолпроданом. В первом случае получают резорциновые смолы, во вто-Ч • ром — дйановые, которые как менее токсичные и более дешевые получили наибольшее распространение. Молекулярная масса эпоксидных смол может меняться от нескольких сотен до нескольких тысяч в зависимости от соотношения в них исходных компонентов.
В табл. 27 приведены данные по влиянию соотношения эпихлоргидрина глицерина и дифенилоляропана на молекулярную! массу и, температуру размягчения эпоксидных смол. 1|















