145758 (728665), страница 9

Файл №728665 145758 (Теория принятий решений) 9 страница145758 (728665) страница 92016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

Для задачи “Поставщик” минимакс риска достигается сразу при двух стратегиях А2 и А3:

max

min

0

200

200

50

100

100

100

100

60

100

100

230

0

130

5. Критерий Лапласа.

В ряде случаев представляется правдоподобным следующее рассуждение: поскольку неизвестны будущие состояния природы, постольку можно считать их равновероятными. Этот подход к решению используется в критерии “недостаточного основания” Лапласа.

Для решения задачи для каждого решения подсчитывается математическое ожидание выигрыша (вероятности состояний природы полагаются равными yj = 1/n, j = 1:n), и выбирается то решение, при котором величина этого выигрыша максимальна.

vL = maxi 1/n aij = 1/n maxi aij.

Решением игры “Поставщик” по критерию Лапласа является вторая стратегия:

max

-250

-225

-225

-230

-265

Гипотеза о равновероятности состояний природы является довольно искусственной, поэтому принципом Лапласа можно пользоваться лишь в ограниченных случаях. В более общем случае следует считать, что состояния природы не равновероятны и использовать для решения критерий Байеса-Лапласа.

6.Критерий Байеса-Лапласа.

Этот критерий отступает от условий полной неопределенности - он предполагает, что возможным состояниям природы можно приписать определенную вероятность их наступления и, определив математическое ожидание выигрыша для каждого решения, выбрать то, которое обеспечивает наибольшее значение выигрыша:

vBL = maxi aij yj.

Этот метод предполагает возможность использования какой-либо предварительной информации о состояниях природы. При этом предполагается как повторяемость состояний природы, так и повторяемость решений, и прежде всего, наличие достаточно достоверных данных о прошлых состояниях природы. То есть основываясь на предыдущих наблюдениях прогнозировать будущее состояние природы (статистический принцип).

Возвращаясь к нашей игре “Поставщик” предположим, что руководители фирмы-потребителя, прежде чем принять решение, проанализировали, насколько точно поставщие ранее выполнял сроки поставок, и выяснили, что в 25 случаях из 100 сырье поступало с опозданием.

Исходя из этого, можно приписать вероятность наступления первого состояния природы вероятность yj = 0,75 = (1-0,25), второго - yj = 0,25. Тогда согласно критерию Байеса-Лапласа оптимальным является решение А1.

Стратегии

aij yj

А1

- 175*

А2

-187,5

А3

- 215

А4

- 297,5

Перечисленные критерии не исчерпывают всего многообразия критериев выбора решения в условиях неопределенности, в частности, критериев выбора наилучших смешанных стратегий, однако и этого достаточно, чтобы проблема выбора решения стала неоднозначной:

Решение

Критерии

Стратегии

Вальда

maxmax

Гурвица

Сэвиджа

Лапласа

Байеса-Л

А1

*

*

*

А2

*

*

*

А3

*

*

*

А4

Из таблицы видно, что от выбранного критерия (а в конечном счете - от допущений) зависит и выбор оптимального решения.

Выбор критерия ( как и выбор принципа оптимальности) является наиболее трудной и ответственной задачей в теории принятия решений. Однако конкретная ситуация никогда не бывает настолько неопределенной, чтобы нельзя было получить хоты-бы частичной информации отностительно вероятностного распределения состояний природы. В этом случае, оценив распределение вероятностей состояний природы применяют метод Байеса-Лапласа, либо проводяд эксперимент, позволяющий уточнить поведение природы.

Литература

1. Аллен Р. Математическая экономия. М., Изд.ин.лит.,1963

2. Вентцель Е.С. Исследование операций. М.:Советское радио, 1972

3. Вильямс Дж.Д. Совершенный стратег. - М.: ИЛ,1960

4. Карлин С. Математические методы в теории игр, программировании и экономике М.:Мир, 1964

5. Кофман А., Фор Р. Займемся исследованием операций. М:Мир, 1966

6. Ланге О. Оптимальные решения. М. Прогресс, 1967 .

7 Мак-Кинси Дж. Введение в теорию игр. М., Физматгиз,1966

8. Оуэн Г. Теория игр. М., Мир 1971

9. Р.Л. Кини, Х.Райфа Принятие решений при многих критериях: предпочтения и замещения. М.:Радио и связь, 1981

10. Р.Штойер Многокритериальная оптимизация. Теория, вычисления, приложения. М.:Радио и связь, 1992

11. Вопросы анализа и процедуры принятия решений.- М.: Мир, 1976

12. Статистические модели и многокритериальные задачи принятия решений.- М.:Статистика, 1979.

13. Р.Л.Кини Теория принятия решений. - В кн.Исследование операций. М.:Мир, 1981 г.

14. Воробьев Н.Н. Теория игр для экономистов-кибернетиков, М.: Наука, 1985.

15. Крушевский А.В. Теория игр. Киев: Вища школа, 1977.

16. Дюбин Г.Н., Суздаль В.Г.Введение в прикладную теорию игр.М.:Наука, 1981

17. Мешковой Н.П., Закиров Р.Ш. Теория игр, конспект лекций. Челябинск, ЧПИ, 1974

18. Э.Й.Вилкас в сб. Современные направления теории игр. Вильнюс. Мокслас, 1976

19. А.Д.Школьников Основы теории игр. Л, Изд.горного института, 1970

20. Смоляков Всегда существующее решение кооперативных игр и его применение к анализу рынков. М.: ВНИИСИ, 1978

Характеристики

Тип файла
Документ
Размер
697,72 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6418
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее