144691 (727742), страница 6

Файл №727742 144691 (Реставрация каменных зданий) 6 страница144691 (727742) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Химическое закрепление грунтов в сравне­нии с другими методами имеет ряд преиму­ществ: простоту производства работ; порта­тивность применяемого оборудования; корот­кие сроки выполнения работ; долговечность закрепления; возможность закрепления грунта на любой глубине без проведения каких-либо специальных выработок и земляных работ; возможность проведения подземных работ без прекращения эксплуатации здания или соору­жения. Приведенные случаи применения хи­мического метода закрепления грунтов под­тверждают эффективность и целесообразность использования этого метода в целях сохране­ния уникальных памятников архитектуры.

Усиление фундаментов и оснований с помощью корневидных свай

В связи с реконструкцией старых городов, их центральных районов и реализацией пла­нов по подземной урбанизации часто возника­ет необходимость передачи в новых условиях нагрузок на большую глубину, тем самым обеспечивая сохранность зданий-памятников. Из-за плохого состояния многих памятников архитектуры исключается возможность обыч­ного способа понижения уровня передачи на­грузки на грунт с помощью забивных свай, устанавливаемых посредством ударных и виб­рационных механизмов. Нет возможности при­менять забивные сваи и тогда, когда наруше­но устойчивое равновесие памятников в результате изменения гидрогеологического ре­жима или изменения нагрузок, а также про­изводства подземных работ вблизи памятни­ков. При этом, однако, возможно использова­ние корневидных свай.

Корневидные сваи представляют собой бу­ровые сваи малого диаметра, заполненные цементным раствором под давлением, распо­лагаемые практически под любыми углами к дневной поверхности и способные образовы­вать совместно с грунтом единую комплексную

структуру. В эту структуру могут быть вовле­чены и конструктивные элементы памятника: фундаменты и стены. На рис. показана схема установки корневидных свай, одновре­менно усиливающих стены, фундаменты и основания. За счет давления при подаче раст­вора в скважину происходит некоторое увеличение диаметра сваи (до 30—50%), неравно­мерное по ее длине, вследствие чего сущест­венно увеличивается сцепление материала сваи с грунтом.

Проходка ствола скважин осуществляется буровыми стайками вращательного (иногда пневмоударного) бурения. В качестве рабо­чего органа служат буровые коронки, армиро­ванные победитом, шарошечные или кресто­вые долота. Для бурения могут быть исполь­зованы высокопроизводительные дизельные станки и менее производительные, но малога­баритные станки с электроприводом, приспо­собленные для производства работ в подва­лах высотой до 2 м и в стесненных условиях. При бурении в неустойчивых грунтах (супеси, пески) стенки скважин крепятся обсадными трубами соответствующих диаметров. В этих случаях обсадные трубы выполняют роль бу­рильных труб.

Бетонирование свай производится через нагнетающие трубы диаметром 18—60 мм в за­висимости от диаметра скважин под давле­нием 3—6 атм. с одновременным, по мере за­полнения скважины, подъемом обсадных труб. Нагнетающие трубы собираются на муфтах. Перед бетонированием в случае засорения скважины грунтом производится промывка во­дой. В отдельных случаях применяется опрессовка скважин воздухом, что позволяет созда­вать расширение свай (например, под укреп­ляемым фундаментом).

Диаметры корневидных свай применяются от 89 до 280 мм, длина свай может коле­баться в пределах 7—40 м и определяется геологическими условиями, характером соору­жения и величиной нагрузки. Сваи выполняются как с армированием, так и без армиро­вания. При армировании свай используется одиночная арматура диаметром 12—16 мм. В отдельных случаях в скважинах оставляют обсадные трубы или трубы для подачи ра­створа, которые выполняют роль арматуры. Расстояние между сваями определяется в за­висимости от нагрузки и несущей способности сваи. Минимальное расстояние между сваями в пределах 3—5 диаметров свай.

В проектах на основе имеющихся сведе­ний о геологическом строении участка, опре­деляется диаметр свай, их количество, нагруз­ка на сваю, которая определяется в резуль­тате статических испытаний. По результа­там испытаний свая диаметром 100 мм (по обсадной трубе), длиной 7 м, установленная в аллювиальных песках, выдерживает нагруз­ку до 22—25 т. При принимаемом коэффици­енте запаса 2,5—3,0 расчетная нагрузка на сваю в этом случае составит 10 т.

Применение корневидных свай имеет боль­шие возможности по сравнению с забивными как в отношении несущей способности, так и в проявлении значительно меньших динамичес­ких нагрузок на памятники архитектуры. Большое значение корневидных свай при при­менении их в практике реставрационных ра­бот заключается в возможности одновремен­ного усиления ими старых фундаментов, стен и оснований памятников

архитектуры.


Схема установки корневидных свай



Укрепление наземных конструкций

Укреплению наземных конструкций камен­ных зданий уделено уже достаточное внима­ние в специальной литературе, в том числе и по отношению к памятникам архитектуры. Современная строи­тельная техника способна в большинстве слу­чаев обеспечить дальнейшую сохранность разрушающейся кладки без ее разборки, и, следовательно, реставратор обязан всемерно избегать каких-либо разборок и перекладок древних частей, обеспечивая комплекс аутен­тичности реставрируемого памятника. Одним из наиболее эффективных средств укрепления разрушающейся кладки без ее разборки яв­ляется уже опробованная на многочисленных объектах инъекция.

Работы по приданию кладке монолитности нагнетанием в ее трещины раствора могут выполняться при условии предварительного устранения причин, вызвавших трещины, ина­че кладка будет снова разорвана в другом месте. Растворы для инъекции кладок памят­ников архитектуры должны проникать в тон­кие трещины; проходить, не расслаиваясь, по шлангам и широким трещинам кладки, обла­дать после твердения необходимой механиче­ской прочностью и сцеплением с кладкой, при небольшой усадочности; приближаться по фи­зическим свойствам, т. е. коэффициенту тем­пературного расширения и паропроницаемо-сти, к укрепляемой кладке; сводить до мини­мума образование высолов на поверхности кладки и исключать вредное влияние раство­ра инъекции на стенопись. Приемы проведе­ния инъекционных работ не должны, по воз­можности, оставлять заметных следов на поверхности ее.

Можно отметить целесообразность приме­нения для инъекции шлакопортландцементов или портландцементов средних и низких ма­рок 200—300. Основное предпочтение следует отдать шлакопортландцементам, обладаю­щим более высокой водоудерживающей спо­собностью, меньшей вязкостью в разжижен­ных инъекционных растворах и дающим мень­ше выцветов на поверхности кладки. Расши­ряющиеся тампонажные цементы (ВРЦ и др.) для инъекционных растворов не могут быть рекомендованы1.

Наибольший эффект укрепления кладки инъекционным путем достигается при предва­рительном увлажнении примерно до 40—50% предельного насыщения. Можно ввести воды и меньше, имея в виду, что чем суше кладка, тем большую водоудерживающую способность должен иметь применяемый раствор.

Для улучшения качества растворов и при­ближения их физических свойств к свойствам древних кладок следует использовать добав­ки неорганических и органических пластифи­каторов и молотые минеральные вещества. Исследования показали, что малые дозы до­бавок поверхностно-активных веществ (ПАВ) значительно снижают степень вязкости инъек­ционных растворов. Наиболее эффективно вводить сульфитно-спиртовую барду (ССБ) 0,2—0,25% от веса вяжущего, особенно при укреплении сильно увлажненной кладки и на­личии тонких трещин (1,5—2 мм), абиетат натрия (аб. н.) 0,02—0,03% с добавлением тонкомолотых минеральных веществ, преиму­щественно при средних и широких трещинах. «Поливинилацетатная эмульсия (50% ПВАЭ) в количестве 2—5% эффективна при укрепле­нии кладки, где недопустимо значительное ув­лажнение ее предварительной промывкой, а также нежелательна и в дальнейшем постоянная влажность, снижающая прочность ра­створа с ПВАЭ. Обеспечивающие повышен­ную морозостойкость и снижающие появление высолов добавки мылонафта в количестве 0,2—0,3% следует применять для укрепления наружных деталей и фрагментов каменной кладки, находящихся в условиях резких ко­лебаний температур, например наружных ко­лонн, парапетов и др.

При нагнетании со значительным количеством во­ды эффекта расширения в таких цементах не происхо­дит. Но они с успехом могут использоваться для зачеканки полусухим раствором раскрытых швов в кладке сводов операции, часто сопутствующей инъекционным работам.

Вопрос долговечности укрепления инъек­ционными растворами каменной кладки па­мятников архитектуры тесно связан со сни­жением коэффициента температурного линей­ного расширения вводимых растворов. Этот коэффициент для кирпичной кладки на изве­стковом растворе колеблется в пределах 4,5—106 до 6-10-6 и для кирпича близок к величине 4,5—5-10-6. Чисто цементный ка­мень, в зависимости от водоцементного отно­шения, при котором он затвердел, имеет коэф­фициент температурного расширения около 18-10-6 при В/Ц =0,3 и снижается примерно до 10-10-6 при В/Ц=0,5. Поверхностно-ак­тивные добавки мало снижают коэффициент температурного расширения, сильнее влияют включения мелкомолотых веществ.

При инъекции трещин, проходящих парал­лельно наружной поверхности стен, серьез­ное значение будет иметь достаточная паропроницаемость затвердевшего инъекционного раствора, которая для старых известково-песчаных растворов сравнительно велика и достигает 1,6—1,8-10-2 г/м-ч-мм. Растворы цементно-песчаные имеют паропроницаемость не более 1,1-10-2 г/м-ч-мм, а жирные бес­песчаные еще меньшую.

Повысить паропроницаемость инъекцион­ных растворов можно с помощью шлакопортландцемента, а также введения поверхностно-активных веществ и тонкомолотых добавок. Минеральные добавки следует применять с вы­сокой тонкостью помола (через сито в 10 000 отв/см2). Молотый кирпич рекомендуется ис­пользовать при нагнетании в трещины массивной и особенно влажной кладки, а из­вестковую пыль — в сухих частях здания, особенно при более тонких конструк­циях.

Гипсовые растворы, легко разрушающиеся при увлажнении и имеющие высокий коэф­фициент температурного расширения, могут быть допущены с добавками 15—'20% тонко­молотой цемянки (тертого кирпича) и замед­лителей твердения лишь при укреплении сухих массивов, обладающих повышенным коэффи­циентом температурного расширения, напри­мер кладок из твердых разновидностей изве­стняка, песчаника и др. Глиняные растворы применимы лишь для заполнения пустот в кладке фундаментов, особенно при влажных грунтах, но с обязательной добавкой во всех случаях не менее 15—20% цемента.

Инъекционные, растворы на основе моло­той извести-кипелки, в сочетании с замедли­телями твердения (ССБ и др.), могут быть рекомендованы лишь для особых случаев при укреплении грунта стенописи и расположенной вблизи нее кладки. Технология применения таких растворов всецело зависит от индиви­дуальных свойств кипелки и требует подбора состава раствора на основе лабораторных опытов.

Добавка к цементу извести в тесте (10— 15% на сухое вещество) применима при за­полнении большинства трещин в кладке на­земных конструкций, однако в случае трещин размером более 15—20 мм следует вводить еще в равном количестве молотую минераль­ную пыль, а при тонких '(менее 1,5—2 мм) и 0,2—0,25% ССБ.

Применение ускорителей схватывания це­ментного раствора (хлористого кальция и др.) способствует появлению выцветов на поверх­ности кладки. Употребление таких добавок может быть оправдано только для быстрей­шего укрепления аварийных конструкций.

Нагнетание растворов в трещины кладки без пробивки отверстий и вмазки в них тру­бок успешно осуществляется при помощи при­жимных инъекторов (рис. 114, 115). Для этого над трещинами формуются при помощи де­ревянного пуансона гипсовые розетки с отвер­стием в дне. После обмазки трещин к ро­зетке прижимается инъектор с резиновой оболочкой и раствор нагнетается в толщу кладки насосом (рис. 116). При преобладании широких трещин может быть использован и конический тип инъектора, для которого от­верстия формуют не на поверхности, а уже в самой трещине, в толще кладки.

Разрушающиеся конструкции архитектур­ных памятников нуждаются, однако, и в ук­реплении самого их материала, теряющего свою прочность под влиянием агрессивных воздействий природы. В отдельных случаях приходится заменять разрушенные материалы новыми. Но выбирать постоянно такие реше­ния—-значит встать на путь подмены ориги­нальных древних сооружений макетами. От­сюда очевидна вся важность укрепления мате­риала памятника.

Разрушение материала каменных зданий, т. е. самого камня, происходит прежде всего от увлажнения. Характер воздействия атмос­ферных осадков наиболее ясен и очевиден. Менее ясен характер увлажнения в результате поднятия по капиллярам грунтовых вод, как и

конденсационное увлажнение каменных кон­струкций. Их часто путают между собой, потому что нередко один и другой вид совмещаются в одном массиве кладки. В кон­тинентальном климате переход к весенне-лет­нему потеплению, а также резкое потепление зимой сопровождается выпадением влаги воз­духа на еще холодный камень. При резком потеплении (на 20—25°С) разность темпера­тур наружного воздуха и стен доходит до 10— 20°С. В этом случае теплый воздух, охлаж­даясь у стен здания снаружи и внутри, до­стигает в пристенном слое предельного насы­щения влагой, выпадающей на холодный ка­мень в виде росы и замерзших кристаллов. Такое увлажнение отчетливо можно наблю­дать на колоннах, сложенных из изверженных пород (гранит, базальт). Выпадение влаги воздуха на колонны и стены здания, сложенные из известняка или кирпича, менее заметно, так как конденсирующая вла­га впитывается в поры камня. Например, мас­сивные колонны Большого театра в Москве, диаметром 1,8 м, после суровой зимы весной 1972 г. при начале оттепели имели внутри кладки влажность, доходившую до 16—17%.

Перемещение влаги в кладке и ее концен­трация в отдельных зонах и плоскостях зави­сят от многих причин: водяной пар переме­щается из области, где упругость водяного пара выше, в область более низких давлений; часть водяного пара может быть перемещена в виде паровоздушной смеси под действием ветрового напора; жидкая влага перемещает­ся в капиллярах за счет капиллярного всасы­вания материала, заполняя в первую очередь более узкие капилляры. При разной темпера­туре наружной и внутренней плоскости стены влага перемещается к более холодному слою кладки. Например, при температуре +10°С и 60% влажности упругость водяных паров со­ставляет е1= 9,21·0,6 = 5,54 мм рт. ст., а при температуре — 10°С и 80% влажности воздуха всего е2=1,95·0,8 = 1,56мм рт. ст. Разность давления е1 — е2 = 5,54—1,56 = 4 мм рт. ст. бу­дет вызывать перемещение водяных паров из теплой в холодную зону. В весенний период увлажнение кладки происходит преимущественно в результате передвижения водяных паров внутрь охлажденной кладки. Летом начинается капиллярный выход влаги обратно к наружным плоскостям кладки. Однако и при этом продолжается передвижение водяных паров в толщу отстающей в прогреве кладки. Осенью и в первой половине зимы происходит перемещение водяных паров, но уже из тол­щи еще теплой . кладки к наружной поверх­ности стен. Древние здания обладают, как правило, очень массивными стенами в нижних ярусах, толща которых прогревается значи­тельно медленнее, что создает условия их по­вышенного увлажнения за счет конденсата паров воды. Наличие заглубленных в землю подклетов, слабо прогреваемых летом, создает в этой зоне здания еще более влажную среду.

Характеристики

Тип файла
Документ
Размер
39,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6802
Авторов
на СтудИзбе
278
Средний доход
с одного платного файла
Обучение Подробнее