143671 (727088), страница 2

Файл №727088 143671 (Обработка результатов эксперимента) 2 страница143671 (727088) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Можно предположить, прочность бетона на сжатие (СВ Х) изменяется под влиянием большого числа факторов, примерно равнозначных по силе. Поэтому, исходя из «технологии» образования СВ Х, т. е. механизма образования отклонений прочности от некоторого номинального значения, можно предположить, что распределение прочности бетона на сжатие является нормальным.

Плотность вероятности нормального распределения имеет вид

Найдём точечные оценки параметров a и σ нормального распределения методом моментов:

Следовательно, плотность вероятности предполагаемого нормального распределения имеет вид

Функция распределения предполагаемого нормального распределения имеет вид

Используя нормированную функцию Лапласа , функцию нормального распределения можно записать в виде

Проведем проверку гипотезы о нормальном распределении СВ Х (прочности бетона на сжатие) с помощью критерия согласия для этого интервалы наблюдаемых значений нормируют, т.е. выражают их в единицах среднего квадратического отклонения s: , причем наименьшее значение полагают равным , наибольшее . Далее вычисляют вероятности попадания СВ Х, имеющей нормальное распределение, с параметрами а = 22,94, σ = 1,65 в частичные интервалы (хi-1; хi) по формуле

,

где

.

Например, вероятность того, что СВ Х (прочность бетона на сжатие) попадает в первый частичный интервал ( ;19) , равна

Аналогично

и т. д. После этого вычисляют теоретические (модельные) частоты нормального распределения и наблюдаемое значение критерия

Затем по таблицам квантилей распределения по уровню значимости q = 0,05 и числу степеней свободы ‚ (k — число интервалов; r — число параметров предполагаемого распределения СВ Х) находят критическое значение .

Если , то считают, что нет оснований для отклонения гипотезы о нормальном распределении прочности бетона на сжатие.

В противном случае, т. е. если , считается, что гипотеза нормального распределения прочности бетона на сжатие не согласуется с экспериментальными данными.

Вычисления, необходимые для определения наблюдаемого значения выборочной статистики приведем в таблице:

Интервалы наблюдаемых значений СВ Х, МПа

Частоты mi

Нормированные интервалы [ui, ui-1]

pi

npi

[18;19)

1

(-∞;-2,39)

0,008

2,00

1

0,05

[19;20)

9

[-2,39;-1,78)

0,029

7,25

3,06

0,42

[20;21)

20

[-1,78;-1,18)

0,081

20,25

0,06

0,00

[21;22)

41

[-1,18;-0,57)

0,168

42,00

1

0,02

[22;23)

56

[-0,57;0,04)

0,231

57,75

3,06

0,05

[23;24)

60

[0,04;0,64)

0,223

55,75

18,06

0,32

[24;25)

38

[0,64;1,25)

0,154

38,50

0,25

0,01

[25;26)

16

[1,25;1,85)

0,074

18,50

6,25

0,34

[26;27)

7

[1,85;2,46)

0,025

6,25

0,56

0,09

[27;28]

2

[2,46;+∞)

0,007

1,75

0,06

0,03

250

1.000

250,0



Замечание. Наименьшее значение стандартизованной переменной

заменено , наибольшее значение заменено . Эта замена произведена для того, чтобы сумма теоретических (модельных) частот npi была равна объему выборки.

В результате вычислений получили . Найдем по таблице квантилей распределения по уровню значимости α = 0,05 и числу степеней критическое значение . Так как , то нет оснований для отклонения гипотезы о нормальном распределении прочности бетона на сжатие.

Построим нормальную кривую. Для этого из середин частичных интервалов восстании перпендикуляры высотой pi/h (pi — вероятность попадания СВ Х в частичный интервал; h — длина интервала). На рисунке 3 концы этих перпендикуляров отмечены кружками. Полученные точки соединены плавной кривой. Сравнение гистограммы и нормальной кривой наглядно показывает, что нормальная кривая хорошо сглаживает гистограмму относительных частот.

Найдем интервальные оценки параметров нормального распределения. Для вычисления доверительного интервала накрывающего математическое ожидание прочности бетона на сжатие (СВ Х), найдем по таблицам квантилей распределения Стьюдента по заданной доверительной вероятности и числу степеней свободы‚ квантиль .

Вычислим предельную погрешность интервального оценивания

Искомый доверительный интервал для математического ожидания

Смысл полученного результата: если будет произведено достаточно большое число выборок по 250 исследований прочности образцов бетона на сжатие, то в 95% из них доверительный интервал накроет математическое ожидание прочности бетона и только в 5% случаев математическое ожидание может выйти за границы доверительного интервала.

Для нахождения доверительного интервала, накрывающего неизвестное среднее квадратическое отклонение σ с заданной вероятностью , найдем по доверительной вероятности и числу степеней свободы ‚ два числа; . Искомый доверительный интервал

Полученный результат означает, что если будет произведено достаточно большое число выборок по 250 исследований прочности образцов бетона на сжатие, то в 95% из них доверительный интервал накроет среднее квадратическое отклонение σ и только в 5% среднее квадратическое отклонение σ можёт выйти за границы доверительного интервала.



2


Характеристики

Тип файла
Документ
Размер
326,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее