143655 (727072)
Текст из файла
Задание №1.
Произвести выборку 40 банков, пользуясь таблицей случайных чисел. Затем по отобранным единицам выписать значения факторного и результативного признаков.
Задание №2.
Построить ряд распределения по факторному признаку. Число групп определить по формуле Стерджесса. По построенному ряду распределения рассчитать среднее арифметическое, моду, медиану, показатели вариации. Сформулировать выводы.
Выводы: Вариация факторного признака (чистых активов) для данной совокупности банков является значительной, индивидуальные значения отличаются в среднем от средней на 11 127 232 тыс. руб., или на 106,08%. Среднее квадратическое отклонение превышает среднее линейное отклонение в соответствии со свойствами мажорантности средних. Значение коэффициента вариации (106,08%) свидетельствует о том, что совокупность достаточно неоднородна.
Задание №3
Осуществить проверку первичной информации по факторному признаку на однородность. Исключить резко выделяющиеся банки из массы первичной информации.
Проверка первичной информации по факторному признаку на однородность осуществлялась в несколько этапов по правилу 3 сигм. В результате была получена достаточно однородная совокупность (все единицы лежат в интервале (Xср. - 3 ; Xср. +3), а коэффициент вариации меньше требуемых 33%), которая представлена ниже.
Задание №4
Предполагая, что данные банкам представляют собой 10% простую случайную выборку с вероятностью 0,954 определить доверительный интервал, в котором будет находиться средняя величина факторного признака для генеральной совокупности.
Xср.– Xген.ср. ≤ Xген.ср. ≤ Xср. + Xген.ср.
Где Xср. – средняя выборочной совокупности, Xген.ср. – средняя генеральной совокупности, Xген.ср. – предельная ошибка средней.
Xген.ср. = t * μген.ср.
Где t – коэффициент кратности средней ошибки выборки, зависящий от вероятности, с которой гарантируется величина предельной ошибки, μген.ср. – величина средней квадратической стандартной ошибки.
Находим t по таблице для удвоенной нормированной функции Лапласа при вероятности 0,954, t = 2.
μген.ср. = ((2*(1- n/N))/n)
Где 2 – дисперсия, n – объем выборочной совокупности, N – объем генеральной совокупности.
N=n/0,1 n=25 N=250 2= 200 301 737 920 Xср. = 1 506 994 (я взял дисперсию и среднюю, рассчитанные по однородной совокупности по не сгруппированным данным)
μген.ср.= 84 917 Xген.ср. = 169 834
Xср.– Xген.ср.= 1 337 161 Xср. + Xген.ср.= 1 676 828
1 337 161 ≤ Xген.ср. ≤1 676 828 - искомый доверительный интервал
В исследовании все размерные величины измеряются тысячами рублей. По причине нехватки места размерность после каждой величины не приводиться.
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.