138278 (724338), страница 4

Файл №724338 138278 (Математическая мифология) 4 страница138278 (724338) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Нечто принципиально новое, по сравнению с рассмотренным выше собственно геометрическим конструированием, мы обнаруживаем уже на примере позиционной записи натуральных чисел. Введя строго фиксированный конечный набор графических символов и определенные правила их комбинирования, мы получаем возможность, наглядно представлять достаточно большие натуральные числа и производимые над ними действия. В эстетическом аспекте вся арифметика натуральных чисел предстает как система организуемых на плоскости графических символов. Организация символов производится посредством нескольких типов манипулирования этими символами: расстановки и перестановки знаков, замены одних знаков другими. Вспомним хотя бы умножение “столбиком” или деление “уголком”. Указанные манипуляции могут быть охарактеризованы как квазигеометрические, поскольку, представляя из себя операции с графическими знаками как целостными образованиями, собственно геометрическими они не являются (геометрическая конфигурация самого знака здесь совершенно неважна, важно лишь удобство его с точки зрения простоты написания, перестановок и замен, а также достаточное отличие от других знаков в рамках той же системы [7, с.58, 61-62]).

Работа с более богатой и разнообразной алгебраической графикой также может быть охарактеризована как манипулирование графическими символами. Рассмотрим, в качестве примера, одну из простейших алгебраических конструкций - группу. Группа - это совокупность элементов (в качестве графических символов можно использовать буквы латинского алфавита), правила манипулирования с которыми, задаются следующими условиями, называемыми аксиомами группы: (G1) из двух элементов x и y можно составить новый графический символ x•y; (G2) графические символы (x•y)•z и x•(y•z) являются взаимозаменяемыми; (G3) среди элементов группы имеется элемент, называемый нейтральным, который обозначим e, такой, что содержащие его графические символы x•e, e•x и x являются взаимозаменяемыми; (G4) вместе с элементом x имеется элемент, называемый обратным для x, обозначим его x', такой, что символы x•x', x'•x и e являются взаимозаменяемыми. Во всех аксиомах x, y и z - произвольные элементы группы. Доказательства каких-либо утверждений относительно групп представляют собой разворачивание определенных квазигеометрических конструкций. Это демонстрация определенных особенностей манипуляции с графическими символами при соблюдении указанных правил. Рассмотрим, например, как производится доказательство того, что нейтральный элемент единственный. Демонстрируется, что любые два графических символа, изображающие нейтральный элемент, взаимозаменяемы. В самом деле, пусть это символы e и f. Тогда, согласно правилу (G3), f взаимозаменяем с e•f, а этот последний символ - с e, следовательно, e и f взаимозаменяемы. Перед нами манипуляционное обоснование, в основе которого всегда лежат простейшие манипуляции, типа “подставить вместо”, являющиеся неформальными, геометрически очевидными действиями. Понимание того, что они обозначают, всегда негласно предполагается. Н.Малкольм сохранил следующую мысль Витгенштейна: “Доказательство в математике заключается в том, что уравнение записывают на бумаге и смотрят, как одно выражение вытекает из другого. Но если всегда подвергать сомнению выражения, которые появляются на бумаге, то не может существовать ни доказательств, ни самой математики” [17, с.90]. Вспоминаются также слова Г.Вейля: “Способ, каким математик обращается со своими формулами, построенными из знаков, немногим отличается от того, как столяр в своей мастерской обращается с деревом и рубанком, пилой и клеем” [7, с.58].

В эстетическом аспекте, как геометрическое, так и математическое доказательство вообще, предстает как демонстрация, т.е. непосредственный показ того, как соединяются, “стыкуются” элементы соответствующей математической конструкции. Результат же математического доказательства - математическое утверждение - есть, в интересующем нас аспекте, утверждение об особенностях соединения элементов математической конструкции, которое мы имели возможность “видеть” в процессе доказательства. Неслучайно математическое утверждение получило название теорема (theorema), т.е. “зрелище”, “то, что смотрят”.

Как известно, самый веский аргумент для обыденного мышления звучит приблизительно так: “Я сам видел, не веришь - пойди и посмотри”. Заслуживает внимания, что наиболее точная из теоретических наук - математика, составляющая как бы диаметральную противоположность обыденному знанию, черпает доказательную силу своих рассуждений в непосредственной наглядности своего предмета, т.е. также в возможности “увидеть самому” и “показать другому”. Можно сказать даже, что подлинной убедительностью, подлинной доказательной силой обладает только демонстрация (непосредственный показ). Как говорит Шопенгауэр: “Последняя, т.е. исконная очевидность, - созерцаема, что показывает уже само слово” [36, т.1, с.200].

Если бы не существовало обсуждавшихся выше естественных ограничений возможностей нашего наглядного представления пространственно-временных отношений (в восприятии слишком большого, слишком малого и т.п.), то, возможно, и математического доказательства, а тем самым и теоретической математики не возникло бы. Математикам не понадобилось бы идти далее лаконичного “смотри” древних индийцев или перегибания чертежа (как, по-видимому, обосновывал геометрические утверждения еще Фалес). Мы могли бы смело, вслед за Шопенгауэром [36, т.1, с.104-108, 196-216, т.2, с.212-214], возмутиться хитросплетениями доказательств от противного, производимых Евклидом там, где достаточно всего лишь перегнуть рисунок, и полагать, что самым лучшим обоснованием теоремы Пифагора является удачный чертеж без каких-либо комментариев.

Однако указанные ограничения существуют, и именно обговаривание соответствующих чертежей и их особенностей знаменовало рождение математики как таковой. Но математики не смогли бы продвинуться достаточно далеко в своих изысканиях, если бы не научились воплощать словесные рассуждения в квазигеометрические символические построения, т.е. не смогли бы вновь опереться на геометрическую оче-видность, но на качественно новом уровне. Именно слово (logos) оказывается тем связующим звеном, которое позволяет шагнуть от геометрического конструирования к квазигеометрическому манипулированию графическими символами (13) . “Посредством понятийного мышления - говорит Г.Рейхенбах - мы можем перейти от созерцания к преобразованному созерцанию. Человеческий разум обладает способностью, так сказать, “перехитрить” визуальные образы с помощью абстрактных понятий и после этого продуцировать новые образы” [26, с.67].

Уже при решении простейших задач геометрии, наряду с собственно геометрическим конструированием систематически применяется и квазигеометрическое конструирование. Возвращаясь к примеру с тысячеугольником, можно заметить, что хотя его наглядное представление и невозможно в той степени, в какой оно осуществимо для трех- или пятиугольника, однако, сохранить конструктивный характер соответствующих рассуждений легко удается посредством введения алгебраической символики, позволяющей рассуждать о соотношении углов и отрезков соответствующей конфигурации вне зависимости от числа сторон, а также различать, неразличимые в наглядном представлении многоугольники с тысячью и тысяча двумя сторонами. Там, где геометрическая наглядность нам отказывает, мы можем опереться на наглядность квазигеометрическую. При этом, как мы могли отвлекаться (абстрагироваться) от толщины геометрических линий и размера геометрических точек, так мы абстрагируемся и от конкретного очертания используемых нами алгебраических знаков, сосредотачивая внимание лишь на системе пространственно-временных отношений, с их помощью передаваемых.

То, что математик занимается при этом именно пространственно-временными отношениями, хорошо иллюстрируется широким применением в математике аксиоматического метода. Ведь главная его идея состоит в сведении определения объекта к указанию системы отношений, в которых этот объект может находиться с другими объектами той же теории.

Итак, в эстетическом аспекте математическое мышление предстает перед нами как пространственно-временное конструирование, которое может выступать либо в форме собственно геометрического конструирования, либо как квазигеометрическое конструирование, т.е. манипулирование графическими символами.

Что изучает математика?

Пространственно-временные конструкции.

Как она это делает?

Посредством разворачивания пространственно-временных конструкций другого уровня.

Такой взгляд на природу математики может быть охарактеризован как пангеометризм (14) . Для него ключем к пониманию специфики математического мышления является именно образный аспект математики, понятийно-логический же аспект рассматривается при этом как вторичный.

4. Математика мистиков, философов, поэтов и традиционная история

математики (Вместо заключения).

Разворачивание математических пространственно-временных конструкций способно вызывать особое чувство красоты, которое без сомнения служит важнейшим психологическим стимулом, как к профессиональным, так и к любительским занятиям математикой. Как всякая подлинная красота, математическое действо обладает магическим обаянием. Оно способно создать в нас ощущение прикосновения к тайне, а порой и религиозный восторг.

Это безошибочно угадал особенно чуткий к такого рода вещам Новалис (Фридрих фон Гарденберг, 1772-1801). В его “Фрагментах” (в первую очередь имеются в виду “гимны к математике”, как назвал их Вильгельм Дильтей) мы находим отчетливое выражение этих мыслей: “Истинная математика - подлинная стихия мага. Истинный математик есть энтузиаст per se. Без энтузиазма нет математики. Жизнь богов есть математика. Чистая математика - это религия. На Востоке истинная математика у себя на родине. В Европе она выродилась в сплошную технику” [19, с.153]. Новалис убежден, что поэт понимает природу лучше, чем ученый. Не ученому и созданной благодаря его усилиям технике дано овладеть миром, но поэту, способному расслышать сокровенный ритм мироздания. Не извне, но изнутри обретается мир. “Истинная математика” Новалиса - это та математика, которая позволяет нам уловить этот скрытый ритм. “Всякий метод есть ритм: если кто овладел ритмом мира, это значит, он овладел миром. У всякого человека есть свой индивидуальный ритм. Алгебра - это поэзия. Ритмическое чувство есть гений” [19, с.152].

Современная математическая культура мало располагает нас к пониманию того, что это за истинная математика (которая в то же время есть истинная поэзия, истинная религия и истинная магия), о которой так вдохновенно говорит Новалис (15) . Может быть поэтому мы так плохо понимаем и математику пифагорейско-платонической традиции, а также многие другие феномены европейской духовной культуры столь же необычно для нас воспринимающие математику и развивающие ее. И дело здесь не столько в культурной гордыне, сколько в реальных барьерах мешающих пробиться к существу реалий иной культуры. Пример того, что удается увидеть современному математику, обратившемуся к “второстепенным страницам истории” дает книга Дэна Пидоу “Geometry and the Liberal Arts” (1976). Автору остается лишь огорчаться, что мы утратили способность восхищаться природой простых геометрических фигур, и надеяться, что “неопифагорейские учения все же получат распространение в культуре грядущих поколений” [20, с.207]. Несомненно, более удачными следует признать попытки П.А.Флоренского и А.Ф.Лосева, которые и явились главными вдохновителями моего интереса к данной области, однако внимательное знакомство с их трудами еще раз убеждает насколько серьезные трудности приходится преодолевать на этом пути.

Мартин Дайк, автор монографии, посвященной математическим фрагментам Новалиса, говорит о своей книге: “Настоящее исследование отчасти предпринято для тех математиков-профессионалов, которым может случиться ознакомиться с фрагментами Новалиса и обнаружить, что математические понятия применяются здесь, хорошо или плохо, но к таким предметам, которые не принято рассматривать математически, которые не укладываются в рамки установившихся математических представлений, и это будет склонять их к выводу о том, что такие фрагменты не могут, вероятно, иметь какого-либо смысла. Можно принять с самого начала, что эти относящиеся к математике фрагменты философичны, но не техничны. С позиции строгого математика они неточны (unrigorous), произвольны (arbitrary) и не вносят никакого вклада в технические аспекты математической науки. Не успевает Новалис проникнуть в великолепное по своей стройности здание математики, как оказывается, что он уже успел незаконным образом расширить его границы (transgressed its boundaries), углубившись в джунгли философских идей, в которые ни один математик, оставаясь математиком, не решится за ним последовать, из опасения, что почва там слишком зыбкая (the ground too slippery) и доказательство бессильно укротить (and prove defenceless among) диких зверей, населяющих эти темные области”. Желая следить за полетом мысли Новалиса, уводящей нас в этом направлении, мы не можем обойтись без постоянной оглядки на официально принятые результаты, постоянного соотнесения с общепринятым содержанием тех математических областей, в которые он вторгается, однако “нам не следует использовать эти официальные стандарты в качестве абсолютных и пригодных для любой ситуации мерок (as measuring rods with absolute and exclusive value)”, и тогда “в его на первый взгляд фантастичных идеях о математике можно будет разглядеть глубокие прозрения о природе этой науки” [41, p.2-3].

То, что говорит М.Дайк о современном математике-профессионале, может быть, к сожалению, слишком часто повторено и о современном историке математики, над которым также в полной мере имеют власть стереотипы профессионального математического образования. В результате, мы попросту весьма плохо знаем “второстепенные” страницы истории математики, а тем более плохо представляем себе их роль в развитии того, что помещается нами на “основных” ее страницах. Книга М.Дайка представляет собой скорее исключение, чем правило. Но можно ли априори утверждать, что роль эта невелика, когда мы едва знаем в лицо тех, чью роль спешим умалить?

Историческое исследование неизбежно предполагает отбор материала. История культуры может быть уподоблена сложнейшей паутине, где каждое культурное событие есть “узелок”, связанный необозримым числом тончайших “нитей” с другими “узелками”. Поэтому, всякое изучение этой “паутины” состоит в выделении основных “узелков” и связей между ними, и игнорировании второстепенных. Однако, вызывает серьезные сомнения возможность адекватной и однозначной оценки “на глаз” того, какие “узелки” и какие “нити” являются основными. В отношении “зрительного восприятия” такой “паутины”, судя по всему, может и должен проявляться хорошо известный эффект переключения зрительного гештальта. При этом переключении выбор основных “узелков” и “нитей” может существенно изменяться. Какую конфигурацию “узлов” и “нитей” мы выделим из необозримого множества всех возможных, зависит от нашей установки. Что мы “увидим” (“два профиля” или “вазу”) зависит от нас. Наше математическое образование готовит нас к тому, чтобы всегда видеть “два профиля” и никогда “вазу”, но это вовсе не означает, что первое представляет собой адекватное выделение основного, тогда как второе - нет. Пафос настоящего доклада как раз и состоит в том, чтобы напомнить о возможности смотреть как на саму математику, так и на ее историю sub specie artis, т.е. видеть “вазу” там, где обычно видят лишь “два профиля”.

Характеристики

Тип файла
Документ
Размер
305,25 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее