138278 (724338), страница 4
Текст из файла (страница 4)
Нечто принципиально новое, по сравнению с рассмотренным выше собственно геометрическим конструированием, мы обнаруживаем уже на примере позиционной записи натуральных чисел. Введя строго фиксированный конечный набор графических символов и определенные правила их комбинирования, мы получаем возможность, наглядно представлять достаточно большие натуральные числа и производимые над ними действия. В эстетическом аспекте вся арифметика натуральных чисел предстает как система организуемых на плоскости графических символов. Организация символов производится посредством нескольких типов манипулирования этими символами: расстановки и перестановки знаков, замены одних знаков другими. Вспомним хотя бы умножение “столбиком” или деление “уголком”. Указанные манипуляции могут быть охарактеризованы как квазигеометрические, поскольку, представляя из себя операции с графическими знаками как целостными образованиями, собственно геометрическими они не являются (геометрическая конфигурация самого знака здесь совершенно неважна, важно лишь удобство его с точки зрения простоты написания, перестановок и замен, а также достаточное отличие от других знаков в рамках той же системы [7, с.58, 61-62]).
Работа с более богатой и разнообразной алгебраической графикой также может быть охарактеризована как манипулирование графическими символами. Рассмотрим, в качестве примера, одну из простейших алгебраических конструкций - группу. Группа - это совокупность элементов (в качестве графических символов можно использовать буквы латинского алфавита), правила манипулирования с которыми, задаются следующими условиями, называемыми аксиомами группы: (G1) из двух элементов x и y можно составить новый графический символ x•y; (G2) графические символы (x•y)•z и x•(y•z) являются взаимозаменяемыми; (G3) среди элементов группы имеется элемент, называемый нейтральным, который обозначим e, такой, что содержащие его графические символы x•e, e•x и x являются взаимозаменяемыми; (G4) вместе с элементом x имеется элемент, называемый обратным для x, обозначим его x', такой, что символы x•x', x'•x и e являются взаимозаменяемыми. Во всех аксиомах x, y и z - произвольные элементы группы. Доказательства каких-либо утверждений относительно групп представляют собой разворачивание определенных квазигеометрических конструкций. Это демонстрация определенных особенностей манипуляции с графическими символами при соблюдении указанных правил. Рассмотрим, например, как производится доказательство того, что нейтральный элемент единственный. Демонстрируется, что любые два графических символа, изображающие нейтральный элемент, взаимозаменяемы. В самом деле, пусть это символы e и f. Тогда, согласно правилу (G3), f взаимозаменяем с e•f, а этот последний символ - с e, следовательно, e и f взаимозаменяемы. Перед нами манипуляционное обоснование, в основе которого всегда лежат простейшие манипуляции, типа “подставить вместо”, являющиеся неформальными, геометрически очевидными действиями. Понимание того, что они обозначают, всегда негласно предполагается. Н.Малкольм сохранил следующую мысль Витгенштейна: “Доказательство в математике заключается в том, что уравнение записывают на бумаге и смотрят, как одно выражение вытекает из другого. Но если всегда подвергать сомнению выражения, которые появляются на бумаге, то не может существовать ни доказательств, ни самой математики” [17, с.90]. Вспоминаются также слова Г.Вейля: “Способ, каким математик обращается со своими формулами, построенными из знаков, немногим отличается от того, как столяр в своей мастерской обращается с деревом и рубанком, пилой и клеем” [7, с.58].
В эстетическом аспекте, как геометрическое, так и математическое доказательство вообще, предстает как демонстрация, т.е. непосредственный показ того, как соединяются, “стыкуются” элементы соответствующей математической конструкции. Результат же математического доказательства - математическое утверждение - есть, в интересующем нас аспекте, утверждение об особенностях соединения элементов математической конструкции, которое мы имели возможность “видеть” в процессе доказательства. Неслучайно математическое утверждение получило название теорема (theorema), т.е. “зрелище”, “то, что смотрят”.
Как известно, самый веский аргумент для обыденного мышления звучит приблизительно так: “Я сам видел, не веришь - пойди и посмотри”. Заслуживает внимания, что наиболее точная из теоретических наук - математика, составляющая как бы диаметральную противоположность обыденному знанию, черпает доказательную силу своих рассуждений в непосредственной наглядности своего предмета, т.е. также в возможности “увидеть самому” и “показать другому”. Можно сказать даже, что подлинной убедительностью, подлинной доказательной силой обладает только демонстрация (непосредственный показ). Как говорит Шопенгауэр: “Последняя, т.е. исконная очевидность, - созерцаема, что показывает уже само слово” [36, т.1, с.200].
Если бы не существовало обсуждавшихся выше естественных ограничений возможностей нашего наглядного представления пространственно-временных отношений (в восприятии слишком большого, слишком малого и т.п.), то, возможно, и математического доказательства, а тем самым и теоретической математики не возникло бы. Математикам не понадобилось бы идти далее лаконичного “смотри” древних индийцев или перегибания чертежа (как, по-видимому, обосновывал геометрические утверждения еще Фалес). Мы могли бы смело, вслед за Шопенгауэром [36, т.1, с.104-108, 196-216, т.2, с.212-214], возмутиться хитросплетениями доказательств от противного, производимых Евклидом там, где достаточно всего лишь перегнуть рисунок, и полагать, что самым лучшим обоснованием теоремы Пифагора является удачный чертеж без каких-либо комментариев.
Однако указанные ограничения существуют, и именно обговаривание соответствующих чертежей и их особенностей знаменовало рождение математики как таковой. Но математики не смогли бы продвинуться достаточно далеко в своих изысканиях, если бы не научились воплощать словесные рассуждения в квазигеометрические символические построения, т.е. не смогли бы вновь опереться на геометрическую оче-видность, но на качественно новом уровне. Именно слово (logos) оказывается тем связующим звеном, которое позволяет шагнуть от геометрического конструирования к квазигеометрическому манипулированию графическими символами (13) . “Посредством понятийного мышления - говорит Г.Рейхенбах - мы можем перейти от созерцания к преобразованному созерцанию. Человеческий разум обладает способностью, так сказать, “перехитрить” визуальные образы с помощью абстрактных понятий и после этого продуцировать новые образы” [26, с.67].
Уже при решении простейших задач геометрии, наряду с собственно геометрическим конструированием систематически применяется и квазигеометрическое конструирование. Возвращаясь к примеру с тысячеугольником, можно заметить, что хотя его наглядное представление и невозможно в той степени, в какой оно осуществимо для трех- или пятиугольника, однако, сохранить конструктивный характер соответствующих рассуждений легко удается посредством введения алгебраической символики, позволяющей рассуждать о соотношении углов и отрезков соответствующей конфигурации вне зависимости от числа сторон, а также различать, неразличимые в наглядном представлении многоугольники с тысячью и тысяча двумя сторонами. Там, где геометрическая наглядность нам отказывает, мы можем опереться на наглядность квазигеометрическую. При этом, как мы могли отвлекаться (абстрагироваться) от толщины геометрических линий и размера геометрических точек, так мы абстрагируемся и от конкретного очертания используемых нами алгебраических знаков, сосредотачивая внимание лишь на системе пространственно-временных отношений, с их помощью передаваемых.
То, что математик занимается при этом именно пространственно-временными отношениями, хорошо иллюстрируется широким применением в математике аксиоматического метода. Ведь главная его идея состоит в сведении определения объекта к указанию системы отношений, в которых этот объект может находиться с другими объектами той же теории.
Итак, в эстетическом аспекте математическое мышление предстает перед нами как пространственно-временное конструирование, которое может выступать либо в форме собственно геометрического конструирования, либо как квазигеометрическое конструирование, т.е. манипулирование графическими символами.
Что изучает математика?
Пространственно-временные конструкции.
Как она это делает?
Посредством разворачивания пространственно-временных конструкций другого уровня.
Такой взгляд на природу математики может быть охарактеризован как пангеометризм (14) . Для него ключем к пониманию специфики математического мышления является именно образный аспект математики, понятийно-логический же аспект рассматривается при этом как вторичный.
4. Математика мистиков, философов, поэтов и традиционная история
математики (Вместо заключения).
Разворачивание математических пространственно-временных конструкций способно вызывать особое чувство красоты, которое без сомнения служит важнейшим психологическим стимулом, как к профессиональным, так и к любительским занятиям математикой. Как всякая подлинная красота, математическое действо обладает магическим обаянием. Оно способно создать в нас ощущение прикосновения к тайне, а порой и религиозный восторг.
Это безошибочно угадал особенно чуткий к такого рода вещам Новалис (Фридрих фон Гарденберг, 1772-1801). В его “Фрагментах” (в первую очередь имеются в виду “гимны к математике”, как назвал их Вильгельм Дильтей) мы находим отчетливое выражение этих мыслей: “Истинная математика - подлинная стихия мага. Истинный математик есть энтузиаст per se. Без энтузиазма нет математики. Жизнь богов есть математика. Чистая математика - это религия. На Востоке истинная математика у себя на родине. В Европе она выродилась в сплошную технику” [19, с.153]. Новалис убежден, что поэт понимает природу лучше, чем ученый. Не ученому и созданной благодаря его усилиям технике дано овладеть миром, но поэту, способному расслышать сокровенный ритм мироздания. Не извне, но изнутри обретается мир. “Истинная математика” Новалиса - это та математика, которая позволяет нам уловить этот скрытый ритм. “Всякий метод есть ритм: если кто овладел ритмом мира, это значит, он овладел миром. У всякого человека есть свой индивидуальный ритм. Алгебра - это поэзия. Ритмическое чувство есть гений” [19, с.152].
Современная математическая культура мало располагает нас к пониманию того, что это за истинная математика (которая в то же время есть истинная поэзия, истинная религия и истинная магия), о которой так вдохновенно говорит Новалис (15) . Может быть поэтому мы так плохо понимаем и математику пифагорейско-платонической традиции, а также многие другие феномены европейской духовной культуры столь же необычно для нас воспринимающие математику и развивающие ее. И дело здесь не столько в культурной гордыне, сколько в реальных барьерах мешающих пробиться к существу реалий иной культуры. Пример того, что удается увидеть современному математику, обратившемуся к “второстепенным страницам истории” дает книга Дэна Пидоу “Geometry and the Liberal Arts” (1976). Автору остается лишь огорчаться, что мы утратили способность восхищаться природой простых геометрических фигур, и надеяться, что “неопифагорейские учения все же получат распространение в культуре грядущих поколений” [20, с.207]. Несомненно, более удачными следует признать попытки П.А.Флоренского и А.Ф.Лосева, которые и явились главными вдохновителями моего интереса к данной области, однако внимательное знакомство с их трудами еще раз убеждает насколько серьезные трудности приходится преодолевать на этом пути.
Мартин Дайк, автор монографии, посвященной математическим фрагментам Новалиса, говорит о своей книге: “Настоящее исследование отчасти предпринято для тех математиков-профессионалов, которым может случиться ознакомиться с фрагментами Новалиса и обнаружить, что математические понятия применяются здесь, хорошо или плохо, но к таким предметам, которые не принято рассматривать математически, которые не укладываются в рамки установившихся математических представлений, и это будет склонять их к выводу о том, что такие фрагменты не могут, вероятно, иметь какого-либо смысла. Можно принять с самого начала, что эти относящиеся к математике фрагменты философичны, но не техничны. С позиции строгого математика они неточны (unrigorous), произвольны (arbitrary) и не вносят никакого вклада в технические аспекты математической науки. Не успевает Новалис проникнуть в великолепное по своей стройности здание математики, как оказывается, что он уже успел незаконным образом расширить его границы (transgressed its boundaries), углубившись в джунгли философских идей, в которые ни один математик, оставаясь математиком, не решится за ним последовать, из опасения, что почва там слишком зыбкая (the ground too slippery) и доказательство бессильно укротить (and prove defenceless among) диких зверей, населяющих эти темные области”. Желая следить за полетом мысли Новалиса, уводящей нас в этом направлении, мы не можем обойтись без постоянной оглядки на официально принятые результаты, постоянного соотнесения с общепринятым содержанием тех математических областей, в которые он вторгается, однако “нам не следует использовать эти официальные стандарты в качестве абсолютных и пригодных для любой ситуации мерок (as measuring rods with absolute and exclusive value)”, и тогда “в его на первый взгляд фантастичных идеях о математике можно будет разглядеть глубокие прозрения о природе этой науки” [41, p.2-3].
То, что говорит М.Дайк о современном математике-профессионале, может быть, к сожалению, слишком часто повторено и о современном историке математики, над которым также в полной мере имеют власть стереотипы профессионального математического образования. В результате, мы попросту весьма плохо знаем “второстепенные” страницы истории математики, а тем более плохо представляем себе их роль в развитии того, что помещается нами на “основных” ее страницах. Книга М.Дайка представляет собой скорее исключение, чем правило. Но можно ли априори утверждать, что роль эта невелика, когда мы едва знаем в лицо тех, чью роль спешим умалить?
Историческое исследование неизбежно предполагает отбор материала. История культуры может быть уподоблена сложнейшей паутине, где каждое культурное событие есть “узелок”, связанный необозримым числом тончайших “нитей” с другими “узелками”. Поэтому, всякое изучение этой “паутины” состоит в выделении основных “узелков” и связей между ними, и игнорировании второстепенных. Однако, вызывает серьезные сомнения возможность адекватной и однозначной оценки “на глаз” того, какие “узелки” и какие “нити” являются основными. В отношении “зрительного восприятия” такой “паутины”, судя по всему, может и должен проявляться хорошо известный эффект переключения зрительного гештальта. При этом переключении выбор основных “узелков” и “нитей” может существенно изменяться. Какую конфигурацию “узлов” и “нитей” мы выделим из необозримого множества всех возможных, зависит от нашей установки. Что мы “увидим” (“два профиля” или “вазу”) зависит от нас. Наше математическое образование готовит нас к тому, чтобы всегда видеть “два профиля” и никогда “вазу”, но это вовсе не означает, что первое представляет собой адекватное выделение основного, тогда как второе - нет. Пафос настоящего доклада как раз и состоит в том, чтобы напомнить о возможности смотреть как на саму математику, так и на ее историю sub specie artis, т.е. видеть “вазу” там, где обычно видят лишь “два профиля”.















