135872 (722710), страница 9
Текст из файла (страница 9)
В перечень отчислений на социальные нужды входят отчисления на государственное и обязательное страхование, в пенсионный фонд,фонд от несчастных случаев и фонд занятости. Норма отчислений берется как процент от основной зарплаты и в сумме составляет 38,7%.
Таким образом:
Зсн=0,387*Зп=0,387*(1173,6+117,36)=497,02 руб.
Накладные расходы составляют 15 % от суммы всех затрат:
Знр=0,15*(Зм+Зп+Здзп+За+Зэ+Зсн)=348,06 руб.
Тогда затраты на разработку определяется как сумма всех затрат:
Зраз=Знр+Зм+За+Зп+Здзп+Зэ+Зсн=2668,42 руб
Смета затрат на разработку приведена в таблице 4.6.
Таблица 4.6. смета затрат на разработку.
№ | Наименование статьи | Сумма, руб |
1 | Затраты на основные материалы и услуги | 357 |
2 | Амортизационные расходы | 37,77 |
3 | Основная заработная плата | 1173,6 |
4 | Дополнительная заработная плата | 117,36 |
5 | Расходы на электроэнергию | 137,61 |
6 | Отчисления на социальные нужды | 497,02 |
7 | Накладные расходы | 348,06 |
Итого: | 2668,42 |
4.3.Расчет цены НИР.
Цену проведения научо-исследовательской работы вычислим по формуле:
Ц=Зраз+П+НДС, (4.4)
Где П – прибыль от НИР, которая составляет 10 % от Зраз; НДС – налог на добавленую стоимость – 15% от суммы прибыли и затрат на разработку.
П=0,1*Зраз=0,1*2668,42=266,84 руб.
НДС= 0,15*(п+Зраз)=440,29 руб.
Тогда цена НИР: Ц=3375,55 руб.
4.4.Направление ожидаемого экономического эффекта.
Электреты в последние годы находят все более широко применение в электронной промышленности. Это объясняется рядом уникальных качеств присущих только им. Естественно, что цена и качество приборов сделанных на их основе, в значительной степени определяются способом их получения.
Полученный в плазме газового разряда электре в нашем случае был применен в электретном микрофоне, который является составной частью диагностического комплекса по измерению проходимости бронхов. Которая позволяет значительно упростить и удешевить процесс установления диагноза.
5.Безопасность и экологичность проекта.
В настоящее время в связи с научно-техническим развитием , формы труда все более изменяются в направлении , характеризующемся увеличением доли умственного труда и , вследствие все более возрастающего режима жизни, увеличением нагрузки на центральную нервную систему.
Из-за внедрения новых технологических процессов и усложнение существующих ,наблюдается усиление влияния вибраций , шума , вредного излучения , пыли и т.д. на работающего и на окружающую среду. В связи с этим все более значимым становится вопросы обеспечения безопасности жизнедеятельности и охраны окружающей среды. Особое внимание обратим на обеспечение безопасности исследователя проводящего данную работу. Так как, инженер исследователь при выполнении своей работы может столкнуться с опасным и и вредными факторами.
5.1.Анализ условий труда на рабочем месте.
Организация рабочего места заключается в выполнении ряда мероприятий , обеспечивающих рациональный и безопасный трудовой процесс. При создании рабочих мест необходимо обеспечивать максимально возможные удобства условий труда, так как ежедневные перегрузки приводят к преждевременной усталости и как следствие невнимательности, что значительно повышает травматизм на рабочем месте. Анализ условий труда на рабочем месте заключается в определении вредных и опасных факторов.
Опасными , согласно ГОСТ 12.0.003.-74 [15], во время работы в лаборатории инженер-исследователь подвергается воздействию психофизиологических и физических факторов. Факторы – воздействии, при которые в определенных условиях приводит к травме или другому внезапному резкому ухудшению здоровья. Если же производственные факторы приводят к заболеваниям или снижению работоспособности , то они считаются вредными.
В ГОСТ 12.003-74*ССБТ “Опасные и вредные факторы . Классификация.” элементы условий труда выступающих в роли опасных и вредных факторов делятся на :физические, химические, биологические, психофизические.
К физическим факторам относятся:
возможность поражения электрическим током;
повышеный уровень шума на рабочем месте;
не оптимальные микроклиматические условия на рабоем месте;
недостаточная освещенность рабочего места;
повышенный уровень электромагнитных полей.
5.2.Опасность поражения электрическим током .
При расчётах и измерениях использовались : ЭВМ, электрические приборы , которые питаются от трёхфазной цепи переменного тока (380/220 В,50 Гц) . Все приборы ,которые находятся на рабочем месте , имеют металлический корпус. Приприкосновении к токоведущим частям, находящимся под напряжением. При нарушении изоляции напряжение может появиться на данной конструкции. При прикосновении к ней человека может произойти замыкание , т.е. прохождение тока через тело человека. При длительном воздействии ( 20 сек и более ) электрический удар способен к остановке дыхания и фибрилляции сердца , влекущие за собой смерть , если пострадавшему не будет оказана своевременная помощь.
Согласно ГОСТ 12.1.038-82 [16] “Электробезопасность. Предельные допустимые уровни напряжений прикосновения и токов.” установлены предельно допустимые уровни напряжений 2В при переменном токе частотой 50 Гц и силы тока 0,3 мА при длительности до 10 мин и t=25 C. Прии аварийных режимах предельно допустимые уровни напряжения и тока зависят от времени воздействия. Так при длительности воздействия 0,8 с. должно быть не более 75 в, а ток не более 75мА. Также перед включением всех электрических приборов в сеть , необходимо проверить наличие заземления , состояние различных блокировок , наличие диэлектрического коврика на рабочем месте. В данном случае используется трехфазная сеть с глухо заземленной нетралью, поэтому в целях защиты от поражения электрическим током, согласно ГОСТ 12.1.019 – 79 [17], необходимо исспользовать зануление.. Таким образом , при проведении анализа условий труда инженера в исследовательской лаборатории видно , что немаловажную роль в обеспечении безопасности играет защитное заземление (защита от поражения электрическим током).
Оптимальное освещение играет важную роль в деятельности работающего .Недостаточное или неправильное освещение рабочих мест и всего помещения приводит к преждевременному утомлению организма , что снижения производительности труда . Минимальная освещённость устанавливается согласно условиям зрительной работы , которые определяются наименьшим размером объекта различения , контрастом объекта с фоном и характеристикой фона . Для создания благополучных условий для зрения должно применяться освещение люминесцентными лампами , т.к. они имеют : более высокую светоотдачу , продолжительный срок службы и спектр излучения близкий к спектру естественного света по сравнению с лампами накаливания . При выполнении работ высокой точности 3 разряда для подразряда “Б” и для комбинированной системы освещения для различных характеристик фона и объекта в соответствии со СНИП 23 - 05 - 95 наименьшая освещенность рабочих поверхностей должна составить 300 лк . Однако с целью предотвращения воздействия психофизических вредных факторов ( перенапряжение анализаторов , монотонность труда ) необходимо повысить норму освещённости до 400 лк , а естественная освещенность должна составлять не менее 5%. При работе в лаборатории инженер подвергается воздействию электромагнитных полей. Их источниками являются: электрическая проводка, работающие приборы, ЭЛТ осцилографов и так далее. Согласно ГОСТ 12.1.006 – 84, напряженность электромагнитного поля в диапазоне частот от 60 кГц до 300 МГц на рабочем месте в течение рабрне должна превышать по электрической составляющей 5 В/м, а по магнитной составляющей – 0,3 А/м. В своей работе мы используем различные электроустановки ( ЭВМ, электрические приборы ) . А как уже известно изоляционные материалы являются горючими веществами , которые могут воспламеняться . Поэтому в целях обеспечения пожарной безопасности на случай возникновения пожара в помещении лаборатории МЭЛ согласно ГОСТ 12.1.004 – 91 [18] необходимо наличие пожарной сигнализации типа ИП – 105 –2/1,размещенных на потолке, а также ручного углекислотного огнетушителя типа ОУ-8 . Выбор углекислотного огнетушителя обусловлен тем , что углекислота не проводит электрический ток , с его помощью можно быстро ликвидировать очаг загорания или локализовать огонь до прибытия пожарной команды.
Неблагоприятные микроклиматические условия: повышенная или пониженная температура и влажность, подвижность воздуха в рвбочей зоне – все это оказывает отрицательное влияние на организм человека. При выполнении работы обмен веществ в организме усиливается , увеличивается и его теплопродукция , следовательно , требуется более интенсивная отдача теплоты в окружающую среду , иначе может наступить накопление теплоты ,повышение температуры тела , которое ведёт к ухудшению самочувствия человека и к заболеваниям . Поэтому на рабочих местах необходимо поддерживать оптимальный уровень микроклимата : нормальную для человека температуру воздуха , влажность , обеспечивать вентиляцию помещений , соответствующую подвижность воздуха . Нормальная температура воздуха в тёплый период года 23 - 25 0С , а в холодный - 22. .24 0С.. Система кондиционирования должна обеспечивать влажность в пределах 40-80 процентов , оптимальный показатель влажности согласно ГОСТ 12. 1.005-88 , лежит в приделах 40-60 процентов. Повышенная подвижность воздуха в сочетании с пониженной температурой может вызвать различные заболевания . Пониженная подвижность затрудняет теплообмен организма с окружающей средой . Норма скорости движения воздуха составляет 0,1..0,2 м/с .
Повышеный уровень шума на рабочем месте влияет на работоспособность , вызывая усталость. Источником шума в лаборатории могут быть несколько типов измерительных приборов в общей системе измерений. Шум представляет собой беспорядочное сочетание звуков разной интенсивности и частоты . Шум оказывает вредное влияние на весь организм и в первую очередь на нервную и сердечно-сосудистою системы. Шум неблагоприятно воздействует на человека : ослабляет внимание , увеличивает расход энергии при одинаковой физической нагрузке , замедляет скорость психических реакций , что может привести к несчастному случаю. Нормативные параметры шума на рабочих местах являются обязательными для всех организаций и предприятий . Нормы допустимого шума на рабочих местах являются обязательными и регламентируются требованиями ГОСТ 12.1.003-83. ССБТ , а для лабораторий предельно допустимый уровень шума составляет не более 50 дБ, по шкале А. Снизить уровень шума можно путем обивки стен лаборатории шумопоглощающими материалами.
5.3.Расчёт зануления .
Одним из самых опасных факторов на производстве является электрический ток . Основной целью расчета является определение условий ее надежного функционирования, то есть быстрого отключения поврежденой электроустановки от сети при одновременном обеспечении безопасного напряжения на ее корпусе в течение времени от возникновения аварийной ситуации до момента отключения. Рассчитаем зануление на отключающую способность. Эквивалентная схема для расчета представлена на рис. 5.1.
Рассчитаем зануление в лаборатории МЭЛ . В качестве защитного проводника используется нулевой рабочий проводник, так как все провода из алюминия, то реактивной составляющей можно принебречь [21], а следовательно все сопротивления считать активными.
Zфс=Rфс, Zфр=Rфр, Zнc=Rнс, Zнр=Rнр (4.1)
Величины сопротвления расчитываются по формуле:
R=r*(l/s) (4.2)
Где l – длинна кабеля на соответствующем участке, S – площадь его сечения . а r для алюминия равно 0,028 Ом*мм2/м [20].
Возьмем длину силового кабеля от подстанции 100 метров, длину кабеля этажной раазводки30 метров. Согласно ПУЭ, сечение жил кабелей соответственно 25 мм и 4 мм.
Сопротивление фазного провода равно:
Rф=Rфс+Rфр=0,028*(100/25+30/4)=0,322 (Ом)
Rф=Rн=0,322 (Ом)
Сопротивление петли фаза – нуль Rфн равно:
Rфн=Rф+Rн+Rдоп=0,644+Rдоп (4.3)
Исходя из токопотребления лабораторных установок, выбираем предохранитель с номинальным током 1 (А). Следовательно:
Rдоп=0,3 Ом Rфн=0,944 Ом
Определим величину тока короткого замыкания Iкз по формуле:
Iкз=Uф/(Zт/3+Rфн)-1=220/(0,906+0,944)=177 (А)
Zт=0,906 – сопротивление обмоток трехфазного трансформатора – взятого из таблицы [20].
При замыкании фазы на корпус электроустановка автоматически отключается, если значение тока удовлетворяет условию: