135818 (722658), страница 2
Текст из файла (страница 2)
4.1 Определение требований к печатной плате Для разработки печатной платы выбираем фольгированный стеклотекстолит марки СФ-2-35-1.5 имеющий следующие свойства: широкий диапазон рабочих температур –60…+105С, удельное поверхностное сопротивление 1010…1011Ом, прочность 3 – 4Н, штампуемость 1,5 – 2, время горения 10с. Стеклотекстолит марки СФ-2-35 обладает значительной стойкостью к короблению и низким водопоглащением. Данные свойства текстолита вполне соответствует условиям эксплуатации «Детектора излучения сотового телефона» - наземная подвижная группа аппаратуры с температурой эксплуатации 40°С, и методу изготовления печатной платы - субтрактивный. Конструкция выполнена на одной двусторонней печатной плате размером 50x65 мм. Площадь платы составляет 3250 мм2. При определении площади платы учитывались площади размещаемых на плате элементов, площади вспомогательных зон, допустимые габариты с точки зрения технологических возможностей и условий эксплуатации, типы базовых несущих конструкций и их основные размеры. Суммарная площадь всех элементов, устанавливаемых на плату, составляет 1300 мм2. Для определения площади платы суммарную площадь устанавливаемых на нее элементов умножаем на коэффициент 2,5 и прибавляем площадь вспомогательных зон. Получаем площадь платы 3250 мм2, что приблизительно соответствует принятой площади и габаритам платы. На основании полученных расчетов (Раздел 5.1) и ГОСТ 23751-86 печатная плата соответствует второму классу точности. В соответствии с ГОСТ 10317-79 основной шаг координатной сетки выбран 2.5мм, исходя из того что наименьшее расстояние между выводами элементов 2,5мм. В соответствии с ГОСТ 10317-79 основной шаг координатной сетки выбран 2.5мм, исходя из того что наименьшее расстояние между выводами элементов 2,5мм. Предельные отклонения монтажных и переходных отверстий в соответствии с пунктом 2.2.3 ГОСТ 23751-86, для второго класса точности | |||||||||
Разработал | Яковенко М.В. | ККЭП 2201 028 000 ПЗ | лист | ||||||
Проверил | Дегтярева Н.Е. | ||||||||
изм | лист | № докум | Подпись | Дата |
печатной платы равны: для выводов диаметром до 1мм ± 0,1мм, для выводов диаметром более 1мм ± 0,15мм. В соответствии со вторым классом точности: - расстояние между краями соседних элементов проводящего рисунка должно быть в приделах: 0,45..0,75мм;
Задаваясь допустимой величиной падения напряжения можно найти реальную γ [п.5.1], а следовательно и площадь поперечного сечения печатного проводника и его ширину. Допустимое падение напряжения для ИМС выбирается по справочнику, для ИМС используемых в схеме «Детектора излучения сотового телефона» допустимое падение напряжения 5%, а напряжение питания ИМС 5В. | |||||||||
Разработал | Яковенко М.В. | ККЭП 2201 028 000 ПЗ | лист | ||||||
Проверил | Дегтярева Н.Е. | ||||||||
изм | лист | № докум | Подпись | Дата |
4.2 Список соединений печатной платы. DD1,9-DD1,11.DD1,8-R3,1-VT1,1. DD1,12-DD1,13-C3,1-R6,1-VD2,1. DD1,6-DD1,10-C3,2. DD1,5-R4,1-R5,2-C4,1. DD1,2-DD1,1-R5,1. DD1,3-C4,2. DD1,11-DD2,8. DD2,9-DD2,11. DD2,10-DD2,12. DD2,12-DD2,6. DD2,4-C6,1-R12,1. DD2,5-C5,1-R9,1. DD2,3-DD2,13. Общая шина -6В DD1,7-DD2,7-BA1,1-HL1,1-C5,2-R9,2-VT2,2-R7,2-R6,2-VD2,2. Шина питания +6В DD1,14-DD2,14-C7,1-VT4,2-DD2,9-R11,1-VT3,1-R9,1-C5,1-DD2,5. | |||||||||
Разработал | Яковенко М.В. | ККЭП 2201 028 000 ПЗ | Лист | ||||||
Проверил | Дегтярева Н.Е. | ||||||||
изм | лист | № докум | Подпись | Дата |
5.3 Расчет технологичности конструкцииВыполним расчёт показателей технологичности устройства «Детектора излучения сотового телефона». В соответствии со схемой электрической принципиальной и сборочным чертежом в устройство входят: - микросхемы в количестве 2 штук - конденсаторы в количестве 7 штук - резисторы в количестве 13 штук - диоды в количестве 2 штук - транзисторы в количестве 4 штук. Микросхемы имеют один тип корпуса на 14 выводов (штыревые выводы): количество микросхем – 2шт. количество выводов – 28шт. Резисторы имеют 1 типоразмер, конденсаторы имеют 3 типоразмера, диоды имеют 2 типоразмера, транзисторы имеют 1 типоразмер. Каждый резистор, конденсатор и диод имеет по 2 вывода, транзистор 3 вывода Количество выводов резисторов – 26шт. Количество выводов конденсаторов – 14шт. Количество выводов диодов – 4шт. Количество выводов транзистора – 12шт. Все микросхемы и электрорадиоэлементы стандартные. Данная конструкция имеет одну оригинальную деталь: печатную плату. 5.3.1.Расчет показателей технологичности. Рассчитаем конструкторские показатели технологичности. Коэффициент применяемости деталей рассчитывается по формуле: Кпд=(1-Дтр ор)/Дтр общ (5.3.1) где Дтр ор – число типоразмеров оригинальных деталей | |||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||
Проверил | Дегтярева Н.Е. | ||||||
изм | лист | № докум | Подпись | Дата | |||
Дтр общ – общее число типоразмеров деталей без учета крепежа. Кпд=1-1/8=0,87 Т.к. все микросхемы и электрорадиоэлементы стандартные, то расчет коэффициента применяемости производится по формуле: Кп эрэ=1-Дтр ор эрэ/Дтр общ эрэ , (5.3.2) где Дтр ор эрэ – число типоразмеров оригинальных электрорадиоэлементов; Дтр общ эрэ – общее число типоразмеров электрорадиоэлементов; Кп эрэ =1- 0=1. Коэффициент повторяемости микросхем и микросборок рассчитывается по следующей формуле: Кпов имс=1-Нтр имс/Нис, (5.3.3) где Нтр имс – число типоразмеров корпусов интегральных микросхем Нис – общее число интегральных микросхем и микросборок в изделии. Конструкция содержит интегральные микросхемы с двумя различными ти-пами корпусов. Всего интегральных микросхем в данном изделии 2шт: Кпов имс=1-1/2=0,5. Так как в данной конструкции используется только одна печатная плата то: Кпов пп=1-1=0. Коэффициент использования интегральных микросхем вычисляется по формуле: Кисп ис=Нис/(Нис+Нэрэ), (5.3.4) где Нэрэ – общее число электрорадиоэлементов. В данной конструкции применяется 26 электрорадиоэлемента и 2 интегральных микросхемы: Кисп ис=2/(2+26)=0,071. Коэффициент установочных размеров электрорадиоэлементов вычисляется по формуле: Кур=1-Нур/Нэрэ, (5.3.5) Где Нур – число установочных размеров электрорадиоэлементов. Количество установочных размеров конденсаторов – 3шт, число в – 1шт. | |||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||
Проверил | Дегтярева Н.Е. | ||||||
изм | лист | № докум | Подпись | Дата | |||
установочных размеров резисторов – 1шт, диодов – 2шт, транзисторов-1шт. Всего электро-радиоэлементов – 26шт: Кур=1-8/26=0,70. 5.3.2.Рассчитаем технологические показатели технологичности: Коэффициент автоматизации и механизации монтажных соединений. При расчете считаем, что автоматизированную пайку можно применять только для ЭРЭ и ИМС со штыревыми выводами. Так как вся схема подвергается автоматизации то: Кам= Нам / Нм , (5.3.6) где Нам – число монтажных соединений, выполняемых с использованием автоматизации и механизации; Нм - общее число монтажных соединений; Кам =84/84=1. Коэффициент механизации подготовки ЭРЭ к монтажу: Кмп эрэ=Нмп / Нм , (5.3.7) где Нмп - число элементов, подготовленных к монтажу с использованием автоматизации и механизации; Нм - общее число подготовленных элементов; Кмп эрэ=26/26=1. Коэффициент автоматизации контроля и настройки примем равным: Км кн =0,7. Определим коэффициент применения типовых технологических процессов. При изготовлении данной конструкции применяются следующие типовые технологические процессы: ТТП изготовления печатной платы; ТТП подготовки ЭРЭ к монтажу, ТТП групповой пайки компонентов со штыревыми выводами. Кроме этого конструкция имеет оригинальную деталь для которой необходимо разработать технологический процесс. Поэтому: Ктп=Нтп / Нп , (5.3.8) где Нтп - число типовых технологических процессов; Нп - общее число технологических процессов; Ктп =3/4=0,75 | |||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||
Проверил | Дегтярева Н.Е. | ||||||
изм | лист | № докум | Подпись | Дата | |||
Р , (5.3.9) где Ki - базовые показатели технологичности; φ - коэффициенты значимости каждого базового показателя, значения функций φ выбираем по таблице из справочника. К=(0,87*0,187)+(1*0,187)+(0,5*0,31)+(0*0,31)+(0,071*1)+(0,7*0,31)+(1*1)+(1*0,75)+ (0,7*1)+(0,75*1)/ 0,187+0,187+0,31+0,31+1+0,31+1+0,75+1+1= 4,675/6,054=0,77. | |||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||
Проверил | Дегтярева Н.Е. | ||||||
изм | лист | № докум | Подпись | Дата |
5 Расчетный раздел 5.1 Расчет электрических и конструктивных параметров элементов печатной платы 5.1.1 Расчет площади печатной платы Площадь печатной платы определяется по формуле: S=∑Si*2,5 (5.1.1) где S-площадь печатной платы; Si- площадь каждого элемента схемы; 2,5- коэффициент Определим площадь печатной платы: S=(13*(2,2*6,0)+(3,0*7,5)+(3,8*1,9)+4*(5,3*5,84)+(4,7*5,2)+2*(19,5*7,5)+5*(8* 12)+(22*6)+(15*3)) *2,5 = 3250мм2 Размеры сторон: 50мм Х 65мм 5.1.2 Расчет ширины печатного проводника При определении класса точности печатной платы и ширины печатного проводника, воспользуемся формулой определения ширины печатного проводника. Для нормальной работы печатного проводника должно соблюдаться неравенство: t ≥ I / (γдоп*h) (5.1.2) где t- ширина проводника; I- номинальный ток протекающий по печатному проводнику; γдоп- допустимая плотность тока; h- толщина фольги. Для нашего устройства t ≥ (0,45/(25*0,0355)) = 0,507мм, что близко по значению ко второму классу точности печатной платы: 0,45…0,75мм по ГОСТ | ||||||
Разработал | Яковенко М.В. | ККЭП 2201 028 000 ПЗ | Лист | |||
Проверил | Дегтярева Н.Е. | |||||
изм | лист | № докум | Подпись | Дата | ||
23751-86 таблица 1. На печатной плате будем использовать ширину печатного проводника 0,5мм ±0,1мм. 5.1.3 Диаметры монтажных и переходных отверстий, контактных площадок для этого воспользуемся формулами: dотв=dвыв+0,1 (5.1.3) D= d + 2b + ∆tв.о (5.1.4) где b- гарантийный поясок; ∆tв.о – верхнее придельное отклонение. Определим диаметры монтажных и переходных отверстий для элементов схемы «Детектора излучения сотового телефона». К561ЛА7, транзисторы КТ3102Е,диоды КД514А,КД522Б, светодиод АЛ307КМ: d=0,5мм + 0,1мм=0,6мм; Резисторы МЛТ: d=0,6мм + 0,1мм=0,7мм; Конденсаторы К50-3А , К10-17, КМ-4: d=0,8мм + 0,1мм=0,9мм; Рассчитаем диаметры контактных площадок для монтажных и переходных отверстий для элементов схемы устройства: К561ЛА7, транзисторы КТ3102Е,диоды КД514А,КД522Б, светодиод АЛ307КМ: D= 0,6мм + 2*0,2мм + 0.1мм = 1,1мм; Резисторы МЛТ: D= 0,7мм + 2*0,2мм + 0.1мм = 1,2мм; Конденсаторы К50-3А , К10-17, КМ-4: D= 0,9мм + 2*0,2мм + 0.1мм = 1,4мм; 5.1.4 Расчет шины питания ρ – удельное объемное электрическое сопротивление ((Ом*мм2)/м), l – длина проводника (м). Ширина печатного проводника шины питания: | ||||||
Разработал | Яковенко М.В. | ККЭП 2201 028 000 ПЗ | Лист | |||
Проверил | Дегтярева Н.Е. | |||||
изм | лист | № докум | Подпись | Дата | ||
t ≥ I/(γдоп*h) , где I – ток, протекающий в печатном проводнике, А; h – толщина проводника, мм. Согласно ГОСТ 23.751-86, γдоп=250 А/мм2. Зависит от допустимого перегрева печатного проводника и технологии получения проводника. Ток, протекающий в печатном проводнике шины питания, определяется суммой токов потребления ИМС, присоединенных к рассчитываемой шине питания. t ≥ (0,4*10-3)/(250*0,45)=0,35мм. Для нормальной работы схемы необходима ширина печатного проводника не менее 0,35мм, в нашей схеме мы используем ширину печатного проводника 0,5мм что соответствует условию. Падение напряжения на печатном проводнике шины питания: U=I*R=ρ* γдоп* l , (5.1.6) где l – длина проводника шины питания. U=0,4*250*13,5=0,67 В. | ||||||
Разработал | Яковенко М.В. | ККЭП 2201 028 000 ПЗ | Лист | |||
Проверил | Дегтярева Н.Е. | |||||
изм | лист | № докум | Подпись | Дата | ||
Разработал | Яковенко М.В. | ККЭП 2201 028 000 ПЗ | Лист | |||
Проверил | Дегтярева Н.Е. | |||||
изм | лист | № докум | Подпись | Дата |
6. Подготовительные операции производства печатных плат в субтрактивных методах.
Подготовительные операции предназначены для обеспечения качества при выполнении основных процессов формирования элементов печатного монтажа. Они включают очистку исходных материалов и монтажных отверстий от окислов, жировых пятен, смазки, пленок и других загрязнений, активирование поверхностей проводящего рисунка, специальную обработку диэлектриков, а также контроль качества подготовки. В зависимости от характера и степени загрязнений очистку (активирование) проводят механическими, химическими, электрохимическими, плазменными методами и их сочетанием. Выбор технологического оборудования для подготовительных операций определяется серийностью производства. Механическая подготовка в условиях мелкосерийного производства осуществляется вручную смесью венской извести и шлиф-порошка под струей воды. Экономически оправдано применение механизированных и автоматических конвейерных линий в условиях крупносерийного и массового производства. Инструментом на этих линиях служат абразивные круги, капроновые или нейлоновые щетки, на которые подается абразивная суспензия. В некоторых зарубежных установках для зачистки используются круги из нетканого нейлона, насыщенные мелкодисперсным порошком карборунда или алунда, которые для устранения перегрева обильно смачивают водой. Для очистки монтажных отверстий от наволакивания смолы и других загрязнений широко применяются установки гидроабразивной обработки (рис. 1), в которых платы со скоростью 0,2…0,4м/ мин проходят рабочую, промывную сушильную камеры установки. | |||||||||||||||||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||||||||||||||||
Проверил | Дегтярева Н.Е. | ||||||||||||||||||||
изм | лист | № докум | Подпись | Дата | |||||||||||||||||
Рис.1. Схема рабочей камеры модуля гидроабразивной очистки отверстий и поверхности печатных плат: 1-камера; 2-форсунки барботажа; 3- фильтр; 4- инжекторные форсунки; 5- заготовка; 6- патрубок слива излишков воды; 7- патрубок слива рабочей смеси из камеры. | |||||||||||||||||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||||||||||||||||
Проверил | Дегтярева Н.Е. | ||||||||||||||||||||
изм | лист | № докум | Подпись | Дата | |||||||||||||||||
В рабочей камере через инжекторные форсунки, качающиеся вокруг оси с частотой 35…100 циклов в минуту, под давлением 0,5…0,7 МПА подается пульпа, состоящая из абразивного порошка (2А, 63С) и воды, которая производит эффективную очистку. Подача воды под давлением 1…1,2 МПА обеспечивает тщательную промывку отверстий в следующей камере. Сушка заготовок осуществляется сжатым воздухом. Ручная химическая и электрохимическая подготовка поверхности проводится в ваннах с различными растворами при покачивании плат и последующей их промывкой, а механизированная- на автооператорных линиях модульного типа по заданной программе (табл.1). Таблица 1 Состав растворов, режимы химической и электрохимической подготовки фольгированного диэлектрика
| |||||||||||||||||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||||||||||||||||
Проверил | Дегтярева Н.Е. | ||||||||||||||||||||
изм | лист | № докум | Подпись | Дата | |||||||||||||||||
Высокое качество и производительность обеспечивает плазменная очистка ПП, которая устраняет использование токсичных кислот, щелочей и их вредное воздействие на обслуживающий персонал, материалы обработки и окружающую среду. Установка плазмохимической обработки МПП c программным управлением УПХО-П предназначена для удаления диэлектрика с торцов контактных площадок. Карусельный принцип позволяет обрабатывать при одной загрузке до 8 плат размером 400х800мм или 16 плат-500х500мм, 64 платы-270х170мм. Аналогичная установка для тех же целей разработана фирмой Branson IPC, США. Она состоит из реактора, мощного ВЧ-генератора, устройства управления и регулирования процессов, вакуумного насоса. Давление в камере 20…40 ПА. Плазмообразующий газ, состоящий из кислорода (70%) и тетрафторметана (30%), подается в камеру со скоростью 600…900 см³/мин. Мощность ВЧ-генератора регулируется в диапазоне 0…4000 Вт, а частота составляет 13,56 МГц. На установке одновременно обрабатывается до 15 плат размером 45х60 см, каждая из которых имеет до 3000 отверстий. Длительность операции очистки пакета-10…16 мин. | |||||||||||||||||||||
Разработал | Яковенко М.В. | ККЭП 2201 200 028 | Лист | ||||||||||||||||||
Проверил | Дегтярева Н.Е. | ||||||||||||||||||||
изм | лист | № докум | Подпись | Дата |