135797 (722638), страница 2

Файл №722638 135797 (Терморезисторный эффект. Терморезисторы) 2 страница135797 (722638) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Когда терморезистивный элемент получен, его защищают специальными лаками, а в ряде случаев помещают в стеклянный или металлический корпус. При измерении сопротивления надо поддерживать температуру терморезистора с высокой точностью (0,05-0,1oC), так как сопротивление является функцией температуры.

Используемые материалы.

Материал для создания терморезисторов должен удовлетворять следующим требованиям: чисто электронная проводимость материала и возможность регулирования ее, стабильность характеристик материала в диапазоне рабочих температур, простота технологии изготовления изделий. Материалы должны быть нечувствительными к загрязнениям в процессе технологического изготовления изделий.

Наибольший интерес вызывают полупроводниковые материалы, обладающие большим ТКС, кроме комплекса необходимых свойств. Большое распространение получили CuO, Mn3O4, Co3O4, NiO и их смеси. На основе смесей оксидов меди и марганца получены полупроводниковые материалы с электропроводностью от 10-8 до 10-1 (Ом∙см)-1. Электропроводность кобальто-марганцевых окисных полупроводников лежит в пределах от 10-9 до 10-3 (Ом∙см)-1. Получение необходимой электропроводности и ТКС достигается выбором процентного соотношения оксидов металлов в композиции при использовании метода совместного охлаждения щелочью азотнокислых соединений марганца, кобальта, меди и последующего прокаливания гидратов окислов.

Также используют окислы титана, ванадия, железа. При изменении соотношения компонентов соответствующих материалов можно получить заданные значения удельного сопротивления и ТКС. Использованием указанных компонентов и несколько видоизмененных способов смешения и термического обжига удалось создать терморезисторы с косвенным подогревом (ТКП).

Интерес для производства терморезисторов вызывают тройные марганцевые системы окислов, так как электропроводность таких материалов слабо зависит от примесей, следовательно, можно получать на их основе терморезисторы с малым разбросом по сопротивлению и ТКС, а значит массовый выпуск терморезисторов с заданными электрическими параметрами.

Современные терморезисторы с отрицательным ТКС обычно изготавливают из следующих оксидных систем: никель-марганец-медь, никель-марганец-кобальт-медь, кобальт-марганец-медь, железо-титан, никель-литий, кобальт-литий, медь-марганец. Кроме того, практикуется добавление таких элементов, как железо, алюминий, цинк, магний, которые позволяют модифицировать свойства перечисленных систем.

Тенденции развития современных материалов с отрицательным ТКС выявили три основных направления в производстве терморезисторов. Главное – получение более стабильных терморезисторов. В результате появились взаимозаменяемые высокостабильные приборы с отрицательным ТКС. Это было достигнуто за счет использования более чистых исходных материалов, подбора соответствующих композиций и тщательного контроля на всех стадиях изготовления терморезистора.

Второе направление – расширение верхней границы рабочих температур. Было создано несколько типов терморезисторов, у которых эта граница приблизительно равна 1000oC. Это было достигнуто за счет применения высокотемпературных материалов.

Третье направление – создание переключающих терморезисторов с отрицательным ТКС. Они имеют очень большое изменение сопротивления в узком интервале температур и называются терморезисторы с критической температурой и терморезисторы на основе металлоксидных соединений, в которых используется резкое изменение проводимости от полупроводниковой к металлической, например VO2 с температурой перехода 68oC.

Довольно перспективное направление представляют собой терморезисторы с положительным ТКС. Терморезистивные элементы с положительным ТКС выпускают на основе титанато-бариевой керамики, сопротивление этих элементов значительно снижено добавлением редкоземельных элементов. Титанат бария BaTiO3 – диэлектрик, поэтому его удельное сопротивление при комнатной температуре велико (1010-1012) Ом∙см. При введении туда примесей, таких, как лантан или церий, в ничтожно малых количествах (0,1-0,3 атомного процента) его удельное сопротивление уменьшается до 10-100 Ом∙см. Если ввести эти примеси в титанат бария, его сопротивление в узком интервале температур увеличится на несколько порядков.

Основные параметры терморезисторов.

Как и любой технический прибор, терморезисторы имеют ряд параметров и характеристик, знание которых позволяет выяснить возможность использования данного терморезистора для решения определенной технической задачи.

Основные параметры терморезисторов с отрицательным ТКС:

  1. Габаритные размеры.

  2. Величина сопротивления образцов Rt и RT (в Ом) при определенной температуре окружающей среды в t, oC, или T, К. Для терморезисторов, рассчитанных на рабочие температуры примерно от -100 до 125-200 oC, температуры окружающей среды принимается равной 20 или 25oC и величина Rt называется «холодным сопротивлением».

  3. Величина ТКС α в процентах на 1oC. Обычно она указывается для той же температуры t, что и холодное сопротивление, и в этом случае обозначается через αt.

.

  1. Постоянная времени τ (в секундах), характеризующая тепловую инерционность терморезистора. Она равна времени, в течение которого температура терморезистора изменяется на 63% от разности температур образца и окружающей среды. Чаще всего эту разность берут равной 100oC.

  2. Максимально допустимая температура tmax, до которой характеристики терморезистора долгое время остаются стабильными.

  3. Максимально допустимая мощность рассеивания Pmax в Вт, не вызывающая необратимых изменений характеристик терморезистора. Естественно, при нагрузке терморезистора мощностью Pmax его температура не должна превышать tmax.

  4. Коэффициент рассеяния H в Вт на 1oC. Численно равен мощности, рассеиваемой на терморезисторе при разности температур образца и окружающей среды в 1oC.

  5. Коэффициент температурной чувствительности B, размерность – [К].

.

  1. Коэффициент энергетической чувствительности G в Вт/%R, численно равен мощности, которую нужно рассеять на терморезисторе для уменьшения его сопротивления на 1%. Коэффициенты рассеяния и энергетической чувствительности зависят от параметров полупроводникового материала и от характера теплообмена между образцом и окружающей средой. Величины G, H и α связаны соотношением: . В самом деле, .

  2. Теплоемкость C в Дж на 1oC, равная количеству тепла (энергии), необходимому для повышения температуры терморезистора на 1oC. Можно доказать, что τ, H и C связаны между собой следующим соотношением: .

Для позисторов, кроме ряда приведенных выше параметров, обычно указывают также еще примерное положение интервала положительного температурного коэффициента сопротивления, а также кратность изменения сопротивления в области положительного ТКС.

Основные характеристики терморезисторов.

ВАХ – зависимость напряжения на терморезисторе от тока, проходящего через него. Снимается в условиях теплового равновесия с окружающей средой.


На графике: (а) – терморезистор с отрицательным ТКС, (б) – с положительным.

Температурная характеристика – зависимость R(T), снимающаяся в установившемся режиме.

Принятые допущения: масштаб по оси R взят возрастающий по закону 10x, по оси T пропущен участок в интервале (0-223) К.

Подогревная характеристика – характеристика, свойственная терморезисторам косвенного подогрева – зависимость сопротивления резистора от подводимой мощности.

Принятые допущения: масштаб по оси R взят возрастающий по закону 10x.

Классификация и маркировка.

Наиболее распространенные терморезисторы изготавливают на основе медно-марганцевых (ММТ и СТ3), кобальто-марганцевых (КМТ и СТ1) и медно-кобальто-марганцевых (СТ3) оксидных полупроводников.

По конструктивному оформлению терморезисторы можно разделить на следующие типы:

  • в виде цилиндрических стержней (КМТ-1, ММТ-1, КМТ-4,
    ММТ-4);

  • в виде дисков (СТ1-17, СТ3-17, СТ5-1);

  • в виде миниатюрных бусинок (СТ1-18, СТ1-19 и др.);

  • в виде плоских прямоугольников (СТ3-23).

Особенностью бусинковых терморезисторов типов СТ1-18, СТ3-18 и СТ3-25 является то, что термочувствительный элемент для защиты от внешних воздействий покрыт тонким слоем стекла, а тонкие платиновые контакты приварены или припаяны (СТ3-25) к траверсам из толстой проволоки.

Терморезисторы типов СТ1-18 и СТ3-18 имеют бусинку диаметром 0,5 мм (выводы диаметром до 0,05 мм), терморезисторы типа СТ3-25 – 0,3 и 0,03 мм соответственно. Терморезисторы типов КМТ-14, СТ1-19 и СТ3-19 имеют герметичную конструкцию. Термочувствительный элемент резистора КМТ-14 – бусинка диаметром не более 0,5 мм, нанесенная на две параллельные платиновые проволоки, приваренные к платиновым выводам диаметром 0,4 мм. Бусинка герметизирована в коническом конце стеклянной трубки, которая является корпусом терморезистора. Термочувствительные элементы терморезисторов СТ1-19 и СТ3-19 помещены в конец миниатюрной капсулы, которая защищает термочувствительный элемент и места соединения контактов с выводами. СТ1-19 и СТ3-19 имеют меньшие размеры и более стойки к механическим нагрузкам, чем КМТ-14.

Терморезисторы ММТ-1 и КМТ-1 предназначены для работы в закрытых сухих помещениях, ММТ-4 и КМТ-4 герметизированы, работоспособны в условиях с повышенной влажностью и даже в жидкой среде.

Также существуют измерительные терморезисторы, предназначенные для измерений в маломощных цепях сверхвысокочастотных колебаний. Терморезисторы типа ТП (ТП2/0,5, ТП2/2, ТП6/2 – цифра в числителе – номинальное значение напряжения в В, знаменатель – рабочий ток в мА) – для стабилизации напряжения в цепях постоянного или переменного тока с частотой до 150 кГц. По конструкции – круглые опрессованные стержни, заключенные в стеклянный баллон, воздух из которого откачан до давления 10-5 мм рт. ст.

Терморезисторы ТКП, СТ1-21, СТ3-21 и СТ3-27 применяются в радиотехнических устройствах и схемах автоматики как регулируемые бесконтактные резисторы. Они имеют косвенный подогрев от специальной спирали, при изменении тока в которой происходит плавное изменение сопротивления терморезистора. Используются, когда необходимо отделить управляемую цепь от управляющей.

Рабочий элемент и подогреватель терморезисторов типа ТКП помещены в стеклянный баллон с нормальным октальным цоколем. Терморезисторы типов СТ1-21, СТ3-21 и СТ3-27 (более новые) имеют более совершенную конструкцию по сравнению с ТКП.

В отличие от понятия «наименование» резистора, применяемого для его характеристики в конструкторской и товаропроизводительной документации, под маркировкой резистора понимают цифры, буквы и символы, наносимые на корпус резистора.

Маркировка содержит лишь самые необходимые и важнейшие сведения о резисторе. Обязательным показателем во всех случаях является номинальное сопротивление.

Сведения о нескольких конкретных приборах.

Терморезисторы с отрицательным ТКС прямого подогрева.

Стержневые и трубчатые.

КМТ-1, ММТ-1, СТ3-1.

Характеристики

Тип файла
Документ
Размер
435,81 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее