tec (722396), страница 2

Файл №722396 tec (Розрахунки й оптимізація характеристик систем електрозв’язку. (Расчёты и оптимизация характеристик систем электросвязи)) 2 страницаtec (722396) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

де - середнє значення потужності шума хибних імпульсів на вих. ЦАП

b – крок кватування;

n - довжина двійникового коду АЦП

можемо визначити за формулою:

де  - середня потужність завади на вході приймача;

в. – середня потужність шуму квантування;

Визначемо ці величини за формулами:

;

та

;

де всередня потужність сигнала;

вих – відношення сигнал/шум на віході (допустимо, що вих = вих.доп )

кв.- відношення сигнал/шум квантування (кв = 20695.57)

Т.я. первинний сигнал b(t) перетворений у цифровий, приймаються значення від (lmin , lmax), і крок квантування визначаеться за формулою:

У сигналів з середнім значенням bmin = bmax . Значення bmax визначається по формулі:

bmax= 9.5*1.4 = 11.24, відл.

b=2*11.24 / 256 = 0.087 B

Знайдемо 2 та кв2 : (вих=100,1*3.7=5011.87)

2= 1.4 / 5011.87 = 0.279 мВт

кв2 = 1.4 / 20695.57 = 0.067 мВт

Звідси х.і.2 = 0.279 - 0.067 = 0.212 мВт

Згідно формули (2.6) виразимо доп :

;

доп = 3 * 0.212*10-3 / (0.087)2 * (49 – 1) = 0.31*10-6;

  1. Розрахунки інформаційних характеристик джерела повідомлень і первинних сигналів.

Повідомлення неперервного джерела перетворюється в первинний аналоговий сигнал b(t) за звичай без втрати інформації , тому розрахунки ін формаційних характеристик джерела будемо проводити для первинного сигналу.

1) Епсилон-ентропія розраховується за формулою:

(3.1)

h(B)-диференційна ентропія
- умовна ентропія.

Диференціальна ентропія залежить від виду розподілу імовірності P(b) та дисперсії сигналу . Так, як за умовою задано гаусів розподіл, то

біт/відлік (3.2)

Так як середнє значення первинного сигналу дорівнює нулю, то . Так як помилка відтворення на виході системи передачі є гаусовою, то умовну ентропію знайдемо за формулою :

(3.3)

де -дисперсія помилки відтворення.

Підставимо формули 3.3 та 3.2 в формулу 3.4, одержимо вираз для визначення епсилон-ентропії ,при цьому переведемо дБ в рази

(3.4).

Підставивши числові значення, одержимо :

біт/відлік

2) Коефіцієнт надлишку джерела обчислюється за формулою :

ǽ = , де - епсилон-ентропія джерела ;

- максимально можливе значення , що досягається за нормального розподілу імовірності сигналу b(t) та тій самій дисперсії сигналу .

,де раз

біт/відлік

З вище розрахованого отримуємо ǽ=

3) Продуктивність джерела , яку називають епсилон-продуктивністю, обчислюють за умови, що відліки беруться через інтервал Котельникова, по формулі :

,де - максимальна частота спектра первинного сигналу , кГц.

біт/с

біт/с.

Причини надлишковості джерела :

Під надлишковістю розуміють щось лишнє. Надлишковими в джерелі вважаються ті повідомлення, які переносять малу, а іноді і нульову кількість інформації. Час на їхню передачу затрачується, а інформації передається мало.

Присутність надлишковості означає, що частину повідомлень можна і не передавати по каналу зв’язку, а відновити на прийомі по відомим статистичним зв’язкам.

Основними причинами надлишковості являються :

  1. Будь-які імовірності окремих повідомлень.

  2. Присутність статистичних зв’язків між повідомленнями джерела.

Вимоги до пропускної можливості каналу зв’язку.

Найбільше значення швидкості R передачі інформації по каналу зв’язку при заданих обмеженнях називають пропускною можливістю каналу, яка вимірюється в [біт/с] :

Під заданими обмеженнями розуміють тип каналу (дискретний або неперервний ) , характеристики сигналів та завад . Пропускна можливість каналу зв’язку характеризує потенційні можливості передачі інформації. Вони описані в фундаментальній теоремі теорії інформації, відомій як основна теорема кодування К.Шенона. Для дискретного каналу вона формулюється слідуючим чином : якщо продуктивність джерела менше пропускної можливості каналу С ,тобто , то існує спосіб кодування (перетворення повідомлень в сигнал на вході ) та декодування ( перетворення сигналу в повідомлення на виході каналу ), при якому імовірність помилкового декодування дуже мала.

Пропускна можливість каналу, як граничне значення безпомилкової передачі інформації, являється одною з основних характеристик будь-якого каналу. Знаючи пропускну можливість каналу та інформаційні характеристики повідомлень (первинних сигналів) можна передавати по заданому каналу.

4. Розрахунок завадостійості демодулятора.

Імовірність помилки двійкового символу для ФМ-2 при оптимальному когерентному прийомі обчислюється за формулою :

, де

h- відношення енергії сигналу, що затрачується на передачу одного двійкового символу Ec до питомої потужності шуму N0.

;

.

Результати розрахунків імовірність помилки двійкового символу заносимо в таблицю 1.

Таблиця 1.

, дБ

, разах

Р

2

1.585

0.0389

3

1.995

0.0235

4

2.512

0.0127

5

3.162

0.0059

6

3.981

0.0024

7

5.012

0.00076

8

6.309

0.00019

9

7.943

0.000034

10

10

0.0000039

Так як в каналі зв’язку не використовується завадостійке кодування, то припустима імовірність помилки символу на виході демодулятора дорівнює значенню , найденому при розрахунку параметрів ЦАП. Визначимо потрібне співвідношення сигнал-шум для системи передачі без кодування , при якому . Рдоп=

Рис.5 – Завадостійкість систем передачі без завадостійкого кодування та з ним.

З графіка визначаємо

Розрахуємо необхідне відношення сигнал-шум на вході демодулятора




5. Вибір коректуючого коду та розрахунок завадостійкості систем зв’язку з кодуванням.

Коректуючи коди дозволяють підвищити завадостійкість і завдяки цьому зменшити необхідне відношення сигнал-шум на вході демодулятора для заданої ймовірності помилки прийнятих сигналів. Величина, що показує в скільки разів (на скільки децибел) зменшується необхідне відношення сигнал-шум на вході демодулятора завдяки використанню кодування, називається енергетичним виграшем кодування (ЕВК).

Широке розповсюдження дістали циклічні коди Боуза-Чоудхурі-Хоквінгема (БЧХ). За параметрами вони близькі до досконалих кодів і разом з тим вимагають відносно простих схем кодерів та декодерів. У кодів БЧХ основні параметри пов’язані співвідношеннями :

, (5.1)

де k- число інформаційних символів, а m- найменше ціле, за якого задовольняється співвідношення

(5.2)

Вибираючи коректуючий код, я зупинився на кодові з довжиною n=108 та кратністю помилок що виправляються Знаючи ці параметри розрахуємо k та n:

,

,

,

,

.

Якщо в каналі зв’язку без кодування для забезпечення заданої ймовірності помилки необхідне відношення сигнал-шум , а в каналі зв’язку з кодуванням - , то ЕВК буде визначатися

або (5.3)

Під декодування з виправленням помилок імовірність помилкового декодування кодових комбінацій визначається за умови, що число помилок у кодовій комбінації на вході декодера q перевищує кратність помилок, що виправляються [1, формула (5.15) ]:

, (5.4)

де (5.5)

    • імовірність помилки кратності q;


(5.6)

    • число сполучень із n по q;

р- імовірність помилки двійкового символу на вході декодера, розрахунок якої для гауссового каналу зв’язку з постійними параметрами розглянутий у розділі 4.

Для переходу від імовірності до ймовірності двійкового символу на виході декодера достатньо врахувати принцип виправлення помилок декодером : декодер заборонену кодову комбінацію замінює найближчою дозволеною. Тому, якщо число помилок у комбінації , але , то в результаті декодування комбінація буде містити помилок ( - кодова віддаль). Оскільки помилки біль високої кратності менш імовірні, то остаточно можна вважати, що в помилково декодованій комбінації є помилкових символів. У коректуючих кодів кодова віддаль . Знайдемо її для даного випадку:

Оскільки при помилковому декодуванні кодової комбінації символів із n помилкові, то перехід від до виконується за формулою

.

Розрахувавши імовірність помилки заносимо результати в таблицю2 та на графік [рис.5.частина 4 даної к. Р.].

Характеристики

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее