Project (722231), страница 6
Текст из файла (страница 6)
Рк доп = 100 мВт
(Мощность рассеиваемая на коллекторе транзистора не должна превышать допустимую величину).
Определим режим работы выходного транзистора. Ток коллектора выходного транзистора был оговорен при выборе принципиальной схемы.
Для уменьшения нелинейных и частотных искажений ток покоя выбрали равным 10 мА исходя из того что:
Rкр макс ≈ Uкэ·Iк
Uкэ – напряжение между коллектором и эмиттером = (5÷6)В.
Рис. 4.1 Выходная характеристика транзистора.
Напряжение гасимое на сопротивлении R19 находим , как разницу напряжения источника питания и падением напряжения на резисторе R20 и между коллектором и эмиттером.
Определим токи выходного каскада:
Где h21=
среднее значение коэффициента усиления по току
Iд – ток протекаемый через делитель напряжения. Для достаточной стабильности режима транзистора Iд должен быть значительно больше Iб, обычно принимают Iд ≥ (5÷10)Iб
Пусть Iд = 10Iб, тогда:
Iэ = 10·10-3 + 0,1· 10-3 = 10,1 (мА)
Iд = 10·0,1мА = 1(мА)
Сопротивление резисторов делителя напряжения в цепи базы транзистора рассчитывается по формуле:
Uб0 = Uбэ + Uэ0 = Uбэ + Iк · Rэ(21)
При использовании в усилителе кремниевых транзисторов, значения напряжений база – эмиттер можно принять равным:
Uбэ = 0,6В, тогда
По номиналам: R18 = 10(кОм)
R19 = 1,1(кОм)
Нелинейные искажения усилителя определяется выходным каскадом, ко входу которого приложено наибольшее напряжение сигнала, точнее нелинейностью характеристик транзистора этого каскада:
R21 = Rвых = 50(Ом)
-
Расчет предварительного усилителя (ПУ).
ПУ усиливает электрический сигнал, обеспечивая наибольшее отношение сигнал/шум. Основные требования, предъявляемые к ПУ – минимальные шумы, максимальный частотный и динамический диапазоны. Как уже рассматривалось ранее, для удовлетворения этих требований входной каскад выполнен по схеме эмиттерного повторителя, который обладает этими свойствами.
Второй и третий каскады для обеспечения заданного частотного и динамического диапазонов выполняются по каскодной схеме. Весь ПУ охвачен общей ООС, что позволяет увеличить частотный и динамический диапазоны без ухудшения чувствительности.
Проведем расчет каскадов усиления по постоянному току. Расчет К – цепи по постоянному току включает выбор режимов транзисторов микросборки и входного каскада, а также расчет сопротивлений резисторов, обеспечивающих выбранные режимы и их стабильность, при этом мощности потребляемые от источника питания и сигнала должны быть минимальными.
Как уже было оговорено, входным выбирается маломощный транзистор СВЧ диапазона с fm > (4÷5)ГГц. Например: 2Т 3114 В-В.
Он, а также транзисторы, входящие в состав СВЧ микросборки
М45121-2 имеют следующие основные параметры:
Рк доп = 100 мВт
Iк доп = 20 мА
Uк доп = 15 В
τк = 1,5 нс
fг = 5 ГГц
h21 = 40 – 330
Ск = 0,6 пФ
Из ранее рассмотренных соображений относительно широкополосности и собственных шумов ФПУ ток коллектора I каскада равен 2 мА. Ко II и III каскадам менее жестки шумовые требования и с целью улучшения частотных свойств, ток коллектора выбран в пределах 5 мА. Для расчета шумов величина сопротивления нагрузки фотодиода по переменному току Rг в данной схеме рассчитывается как:
Rг = R2 || R4 || R1 = 1кОм
При Rг = 1кОм шумы Rг и тока базы транзистора соизмеримы, если Iб = 20мкА
При приравнивании:
Iб = 20мкА
Находим и наносим на схему (рис.3.2) значение напряжения на всех узлах схемы относительно общего (заземленного) полюса источника питания. При этом следует учесть, что величина нагрузочных резисторов II – го и III – го каскадов (R7 и R15) должны быть не более 75Ом. Иначе ухудшатся частотные свойства усилителя. Исходя из этого, при коллекторных токах 5мА, на этих резисторах будет падение напряжения около 0,5В.
Коэффициент передачи цепи обратной связи по постоянному току вычисляется по следующей формуле:
Rвх(VT4) – входное сопротивление каскада с ОК.
Rвх = h11+Rэ(1+h21)
Так как Rвх » R1 и им можно пренебречь, тогда
Напряжение на базе VT1:
Uб0,1 = Uк2 · В
Uб0,1 = 11,5 · 0,37 = 4,2(В), где
Uб0,1 = Uбэ,1 + Uбэ,3 + Uэ,3
При использовании в усилителе кремниевых транзисторов значения напряжения база – эмиттер можно принять равным (0,6÷0,7)В.
Выбираем: Uбэ,1 = 0,6 В
Uбэ1,3 = 0,7 В
Тогда Uэ,3 = 4,2-1,3 = 2,9(В)
Напряжение на эмиттере первого транзистора находим следующим образом:
Uэ,1 = τб0,1 - τбэ,1
Uэ,1 = 4,2-0,6 = 3,6(В)
Для широкополосного усилителя выбираем Uэ,2 = 4В
Следовательно:
Uэ3 = Uк,2 = Uкэ,2 - Uэ,3
Uкэ,3 = 11,5 - 4 - 2,9 = 4,6(В)
Напряжение на базе второго транзистора
Uб0,2 = Uк,3 + Uбэ,2 = (Uэ,3 + Uкэ,3) + Uбэ,2
Uб0,2 = (2,9 + 4,6) + 0,7 = 8,2(В)
Так как каскады II и III однотипны то постоянные напряжения транзисторов T4 и T5 соответствуют постоянным напряжениям транзисторов T2, T3 ИМС.
Зная все напряжения в схеме и токи каскадов сопротивление резисторов схемы:
по номиналу принимаем R9 = R16 = 510(Ом)
Для достаточной стабильности режима транзисторов Т2, Т4, Т5 ток, протекающий через делитель напряжения в цепи базы Iд берем равным 1мА.
Сопротивление делителя в цепи базы VT1 должны с одной стороны удовлетворять условию Rг = R2 || R4 || R1 = 1кОм, а с другой стороны, обеспечивать необходимое напряжение смещения (4,2В).
Величина R2, исходя из смещения на T3 и тока коллектора, VT1 выбрана 1,8 кОм, следовательно:
(R1||R4 = x)
x · 1,8 = x + 1,8;
0,8x = 1,8;
x = 2,25;
Решив систему уравнений, найдем необходимые величины резисторов R1 и R4:
Выберем: R1 = 3,6 кОм и R4 = 6,2 кОм
Сопротивления резисторов делителя напряжения в цепи базы Т2, Т6 рассчитываются по следующим формулам:
Эти резисторы выберем равными 7,5 (кОм)
Примем номиналы этих резисторов равными 3,9 кОм.
Для расчета базового делителя транзистора Т5 используется аналогичная методика. Ток делителя выберем равным 1мА, что соответствует номиналам резисторов:
Ближайшими к этим будут номиналы: 8,2(кОм) и 3,6(кОм), соответствующие резисторам R11 и R12.
Местную ОС в цепи эмиттера Т3 создает цепочка R10;C5, а также R17;C7 в III - ем каскаде ФПУ.
Необходимое значение ОС: F = 1 + S · Rэос
Коэффициент усиления усилителя без ОС (К) должен быть достаточным для обеспечения заданного значения К, при требуемой величине F:
По номиналу RЭОС(R10) = 22(Ом), тогда требуется глубина местной обратной связи равной:
F = 1 + 0,2 · 2,2 = 5,5
Цепь Г – образных RC фильтров в цепи питания используется из условия выполнения двух требований:
-
Минимальные потери напряжения источника питания;
-
Обеспечение устранения самовозбуждения из-за паразитной обратной связи между каскадами на сопротивлении питающих проводов и внутренним сопротивлением источника питания;
-
Расчет частотных характеристик цепи усилителя.
Определим граничную частоту усиления ФПУ. Коэффициент усиления К цепи, как функцию передачи информации линейной цепи, представить в операторной форме [9]:
где U2(p) – напряжение на выходе фотоприемного устройства
U1(p) – напряжение на нагрузке ФД т.е. на комплексном сопротивлении по переменному току, действующему между базой входного транзистора и общим проводом.
К(р) – общий коэффициент усиления всех каскадов ФПУ, кроме выходного.
Jф – фотопоток сигнала
Zвх,F – входное сопротивление ФПУ при действии общей ОС, охватывающей первых 2 каскада:
В нашем случае К(р) = К1(р) · К2(р) и К(р) = К1 · К2 = К2, так как
К1 = 1 и усиление этих каскадов можно считать в нашем частотном диапазоне постоянным.
Тогда при использовании формулы Блеймана, найдем Zвх,F:
Fкз = 1; Fxx = 1 + кβ(р) , где
В результате получим:
1+ B0 · K = F0 – глубина местной гальванической обратной связи.
В0 – коэффициент передачи по петле обратной связи.
Частота верхнего среза для входных каскадов ФПУ (первого и второго) при действии ООС равна:
Определим напряжение шумов на выходе ФПУ:
I = IRГ + Iб + Iд0 = 50мкА + 20мкА + 180мкА = 0,25мА
Чтобы пренебречь шумами измерительного приемника, которые в полосе частот 20 кГц составляет 0,5 мкВ, увеличим напряжение шумов на выходе ФПУ в 3 раза:
4.4. Оптимизация характеристик цепи ПУ
( при помощи программы моделирования электрических цепей Fastmean).
Программы моделирования электрических цепей (такие как OrCAD PSPICE, Micro-Cap, Electronics Workbench) во многих задачах обеспечивают удовлетворительный анализ переходного процесса. Однако в некоторых случаях расчет занимает очень много времени и точность может быть значительно ниже, чем необходимо, так как множество точек переходного процесса необходимо вычислить с помощью традиционной процедуры интегрирования.
В программе FASTMEAN используются новые решения матричных рекуррентных уравнений. Этот алгоритм совершенно отличается от обычно используемых в программах. Вместо отдельных точек функции переходного процесса вычисляются коэффициенты разложения в ряд Тейлора в матричной форме. Это позволяет найти значение функции для любого момента времени внутри заданного шага, который может быть больше (в сотни, тысячи раз и более), чем обычный шаг в широко используемых программах. В некоторых случаях, переходный процесс во всем временном интервале может быть рассчитан за один шаг.















