SIGNAT (722141), страница 2
Текст из файла (страница 2)
Такое понятие, как почти правильная сигнатура, не имеет смысла; индицируемый код 006А совершенно не связан с кодом 006С. Сигнатура может быть только правильной или не правильной.
Какие изделия пригодны для испытания методом сигнатурного анализа.
Как правило, в изделия, при эксплуатации которых предполагается использовать сигнатурный анализ, в процессе разработки вносят определенные средства, позволяющие производить этот анализ наиболее простыми и дешевыми приборами и повысить эффективность контроля. Прежде всего это средства, позволяющие разрывать в режиме контроля цепи обратной связи в контролируемой схеме. Когда выходит из строя один из элементов, входящих в контур с обратной связью, локализовать неисправности внутри этого контура с помощью сигнатурного анализа не удается.
Поясним это на примере схемы, изображенной на рис. 2. Допустим, что нисправная ИМС 2. Это приводит к появлению неправильной сигнатуры на выходе схемы Т, причем на всех входах схемы сигнатуры правильные, а в точках A, B, C и D – неправильные. Указать, какой из четырех элементов схемы вышел из строя, невозможно, так как нет ни одного элемента, у которого при неправильной выходной сигнатуре были бы правильные все входные. Если снабдить схему переключателем П1, который в режиме тестирования размыкает цепь обратной связи, сигнатура в точке E перестает зависить от сигнатуры в точке D, и в этом случае неисправность ИМС 2 легко обнаруживается.
Рис. 2. Пример цифровой схемы с обратной связью
На практике, как правило, не требуется разрывать контуры с обратной связью, включающие в себе всего несколько простейших логических элементов, подобные схеме, изображенной на рис. 2, так как локализация сигнатурным анализом неисправности с точностью до такого контура позволяет быстро выявить неисправность конкретного элемента другими методами. Что же касается МПС в целом, то она целиком охвачена обратной связью по контуру программного управления.
Поэтому для применения сигнатурного анализа необходимо иметь возможность разрывать цепи обратной связи в режиме тестирования МПС. Для однокристального микропроцессора это условие реализуется отключением шины данных от входа МП. Разрыв обратной связи по шине данных можно реализовать с помощью механических переключателей или электронных ключей.
Вторым важным условием пригодности МПС для испытаний с помощью сигнатурного анализа является наличие схем, вырабатывающих сигналы Пуск и Стоп, необходимые сигнатурному анализатору для выработки измерительного “окна”, т.е. интервала времени, в течении которого накапливается сигнатура.
Третьим требованием является наличие в составе МПС ПЗУ, в которм содержится тестовая программа. В качестве тестовой может выступать как специально разработанная, так и определенная рабочая программа, если она, по мнению разработчика, в достаточной мере использует все устройства МПС.
Увеличение объема аппаратуры и стоимости разработки МПС с учетом требований применимости сигнатурного анализа по сравнению с объемом и стоимостью обычной МПС не превышает в среднем 1%.
Простой сигнатурный анализатор.
Дешевый сигнатурный анализатор можно собрать из стандартных логических ИС. Основу его составляет 16-ти разрядный регистр сдвига с элементом исключающего ИЛИ в цепи обратной связи. Первоначально регистр переводится в нулевое состояние, которое является запрещенным состоянием для автономного ГПСП(Генератор ПсевдоСлучайной Последовательности), но из которого его можно вывести любым битом с логической 1 во входном потоке данных. Сигналы пуска, останова и синхронизации подаются из проверяемой системы вместе с сигналом от проверяемого узла. Сигнал пуска разрешает прохождение сигналов синхронизации в регистр сдвига, поэтому данные можно синхронно сдвигать в регистре. Сигналом пуска можно также клапанировать входной поток данных. Сигнал останова прекращает синхронизацию регистра сдвига и блокирует входные данные. Сигналом останова остаток из регистра сдвига передается на индикаторы.
Структурная схема простого сигнатурного анализатора.
Структурная схема простого сигнатурного анализатора приведена на рис. 3.
Схема иллюстрирует несколько интересных особенностей. 16-разрядный регистр сдвига реализован на двух микросхемах КР1533ИР8, а цепь обратной связи построена на двухвходовых элементах исключающего ИЛИ 1533ЛП5. Входной поток данных для улучшения формы сигналов подается на триггер Шмитта.
В приборе широкого назначения необходимо иметь возможность устанавливать для сигналов пуска, останова и синхронизации любой активный фронт – нарастающий или спадающий. Например, в одном тесте нужен сигнал пуска с активным нарастающим фронтом, а в другом тесте он должен запускать операции спадающим фронтом. Возможность задания активного фронта сигнала обеспечивается входными элементами исключающего ИЛИ, через которые сигналы проходят в схему управления. В случае сигнала пуска переключатель S1 подсоединяется к земле или к источнику питания Vcc. Когда ключ замкнут на землю, на выходе элемента исключающего ИЛИ повторяется входной сигнал пуска. Если же S1 подключен к Vcc, сигнал на выходе представляет собой инверсию входного сигнала. Предположим, что для инициирования схемы управления всегда требуется нарастающий фронт сигнала. Тогда для удовлетворения этого требования с помощью S1 можно выбрать либо нарастающий фронт сигнала (S1 подключен к земле), либо спадающий фронт сигнала (S1 подключен к Vcc).
Рис. 3. Простой сигнатурный анализатор
Остаток, сформированный в регистре сдвига, при восприятии сигнала останова индецируется как “сигнатура” проверяемого узла. Отметим, что информация индицируется в стандартном 16-ричном формате, а не в специальном формате фирмы Hewlett-Packard. Наличие однозначного соответствия между обоими форматами, к которому легко привыкнуть, устраняет этот недостаток.
Секция анализа простого сигнатурного анализатора.
Рис. 4. Секция анализа простого сигнатурного анализатора
На рис. 4. Показана секция формирования сигнатур простого сигнатурного анализатора.
До начала работы прибора оператор вручную сбрасывает систему, при этом устанавливается начальное состояние схемы управления, а 16-разрядный регистр сдвига переводится в нулевое состояние. После сброса сигнал пуска разрешает прохождение сигнала синхронизации в регистр сдвига, который синхронно сдвигает данные до появления сигнала останова. Светодиод в схеме управления показывает, что прибор формирует сигнатуру. Во время процесса формирования сигнатуры индикаторы сигнатуры находят ся в погашеном состоянии.
Линия входных данных подается на триггер Шмитта для предотвращения ложного срабатывания схемы.
Схема управления выполнена на двух RS - триггерах, трех 2-х входовых элементах И-НЕ и двух инверторах. Сигналом сброса схема управления запрещает прохождения сигнала синхронизации на сдвиговые регистры и подготавливается к приему сигнала пуска. После прихода сигнала пуска, схема управления начинает пропускать сигналы синхронизации на сдвиговые регистры и подготавливается к приему сигнала останова. После прихода сигнала останова, снова блокируется прохождение сигналов синхронизации на сдвиговый регистр, при этом на индикаторах отображается информация полученная в сдвиговом регистре.
Схема индикации сигнатуры зафиксированной в анализаторе.
Схема индикации сигнатуры, зарегистрированной в анализаторе, приведена на рис. 5. Секция индикатора и анализатора работают асинхронно. Выходы регистра сдвига после завершения формирования сигнатуры подаются на дешифраторы. Выходы каждого дешифратора подаются на соответствующие элементы индикации (семисегментный индикатор).
Рис. 5. Секция индикации простого сигнатурного анализатора
Данные индицируются в стандартном 16-ричном формате, причем цифра 6 имеет “хвостик”, позволяющий отличить ее от малой буквы b.
Описанный анализатор относительно прост, но является вполне работоспособным прибором и стоит примерно в 10 раз дешевле анализаторов, выпускаемых промышленностью.
Описание элементной базы используемой для создания простого сигнатурного анализатора.
Для реализации схемы приведенной на рис. 4, 5 использовались интегральные микросхемы ТТЛ серии КР1533, так же микросхемы серии КР514 и полупроводниковые идикаторы.
Далее приводится перечень используемых микросхем и их обозначения на схемах.
Название микросхемы | Функциональное назначение | Обозначения на схемах |
КР1533ТЛ2 | Шесть триггеров Шмитта-инверторов | DD1 |
КР1533ЛП5 | Четыре двухвходовых логических элемента ИСКЛЮЧАЮЩЕЕ ИЛИ | DD2, DD8 |
КР1533ЛН1 | Шесть логических элементов НЕ | DD3 |
КР1533ТР2 | Четыре RS-триггера | DD4 |
КР1533ЛА3 | Четыре логических элемента 2И-НЕ | DD5 |
КР1533ИР8 | Восьмиразрядный сдвиговый регистр с последовательной загрузкой и араллель- ной выгрузкой | DD6, DD7 |
КР514ИД4 | Дешифратор семисегментного индикатора с отображением 16 различных знаков | DD9, DD10, DD11, DD12 |
АЛС304А | Полупроводниковый семисегментный индикатор с общим катодом | HG1, HG2, HG3, HG4 |
Тестирование в режиме свободного счета с использованием сигнатурного анализатора.
Системное ядро. Режим свободного счета.
Для поддержания работоспособности системы не должно быть отказов в некоторых ее компонентах. Эти важнейшие компоненты в совокупности называются системным ядром, и в него обычно входят ЦП, системный генератор синхронизации, шина управления и шина адреса.
Цифровой компьютер можно рассматривать как ядро, окруженное периферийными схемами, и ядро должно работать, чтобы можно было проверить остальные компоненты системы. К счастью, системное ядро проверяется довольно просто, если в системе предусмотрены средства, которые позволяют разорвать шину данных и ввести команду в ЦП. Обычно в ЦП вводится какая-нибудь разновидность холостой команды, например NOP или MOV A,A. После этого системное ядро можно перевести в режим СВОБОДНОГО СЧЕТА.
ЦП осуществляет операцию считывания из памяти для выборки следующей команды. Она всегда интерпретируется как команда NOP, что заставляет процессор перейти к следующему адресу памяти и произвести еще одну операцию считывания. ЦП вынужден считывать команду “нет операции” из каждой ячейки памяти, в результате чего на шине адреса формируются все возможные двоичные коды. При просмотре сигналов в каждой линии шины адреса можно установить факт ее отказа, проявляющийся в замыкании на землю или на питание, в обрыве линии или в замыкании на другую линию шины адреса.
Если по линиям шины адреса передаются правильные сигналы, можно считать, что системное ядро функционирует. Отказ в системном генераторе синхронизации или неисправная линия шины управления почти наверняка не дадут правильной работы в режиме свободного счета. Тест свободного счета обеспечивает простой метод тестирования некоторых важных компонентов в микропроцессорной системе и применим к любому микропроцессору. Режим свободного счета имеет большое значение для сигнатурного анализа.
Использование сигнатурного анализатора в режиме свободного счета.
Сигнатурный анализатор можно использовать для проверки ядра системы, образуя сигнатуры узлов в режиме свободного счета.
При проведении любого теста с применением сигнатурного анализатора необходимо решить, какие сигналы от проверяемой системы следует использовать в качестве сигналов пуска, останова и синхронизации. В промышленных сигнатурных анализаторах зонд для касания узла имеет логический пробник, который дает визуальную индикацию активности. Конечно, индикатор пробника не дает возможности определить природу действий в узле, но он показывает наличие или отсутствие сигналов в проверяемом узле.
Предположим, что исследуется система с 8-битным микропроцессором, имеющим 16-битную шину адреса. В цикле свободного счета на шине адреса возникают все двоичные наборы, которые циклически повторяются. Благодаря периодичности такой тип активности идеально подходит для сигнатурного анализа. На старшей линии A15 шины адреса действует низкий уровень для одной половины всех адресов и высокий для другой половины. Следовательно, между соседними нарастающими фронтами сигнала на линии A15 находится один полный цикл шины адреса. Сигнал с этой линии можно использовать как сигналы пуска и останова анализатора. Первый из них осуществляет запуск, а второй - останов. Остаток, образованный в регистре сдвига между этими событиями, подается на индикатор в качестве сигнатуры проверяемого узла. В режиме свободного счета все команды осуществляют считывание из памяти, и сигналы для анализатора можно взять с линии READ. Анализатор настраивается на нарастающие фронты входов пуска, останова и синхронизации, поэтому данные синхронно проходят через регистр сдвига по заднему фронту сигнала READ в течении одного полного цикла шины адреса. Необходимы подключения показаны на рис. 6.