SHUM (722027), страница 2
Текст из файла (страница 2)
Все присоединительные размеры модулей и каркасов строго стандартизованы.Определены длительности и амплитуды электрических сигналов,а также напряжения питания модулей.Впервые в международной практике были стандартизованы не только размеры,но и логический протокол-правила передачи информации по линиям магистрали.
В дорогостоящей магистрали КАМАК линии были использованы весьма нерационально:24 линии для чтения,5-для передачи команд и только 4 линии были определены для передач всего-навсего 16ти адресов в модуле.Все линии начинались в крейт-контроллере-крайнем правом модуле,который служил для связи магистали каркаса-крейта с внешним мини-компьютером,
работающим в ином логическом протоколе ("crate" по-английски означает плоский ящик с отделениями,например,ящик стекольщика).Налево в магистраль контроллер передавал для 24х модулей информацию,выработанную компьютером,а направо шла из модулей необработанная,но уже закодированная информация, отображающая величины,измеренные датчиками в эксперименте.Двунаправленность интерфейсного контроллера была отображена в эмблеме системы КАМАК в виде двуликого бога Януса.
Через 3-4 года после публикации стандарта десятки фирм в разных странах выпускали модули КАМАК более 300 типов как для экспериментов,так и для контроля и управления технологическими процессами на производствах.
Подобно железнодорожным системам,электрические модульные системы также долговременны.Если модули достаточно широко распространились и их количество превзошло некий критический уровень,то даже морально устаревшую аппаратуру оказывается выгодным эксплуатировать.Большой парк накопившихся разнообразных модулей позволяет в течение нескольких дней,а то и часов, скомпоновать систему с новыми характеристиками.Системе КАМАК уже более 25 лет,но она все еще используется как с ПЭВМ,так и с микропроцессорами,
встроенными непосредственно в контроллер.
Микропроцессоры в модулях.
Создатели системы КАМАК в конце 60х г.г. сами начали применять только что появившиеся интегральные микросхемы, однако у них не хватило смелости предположить,что в 1972г. в электронике начнется революция-появится микропроцессор.
Неудобства магистрали КАМАК заставили электронщиков искать решения,позволяющие эффективно использовать качественно новую ИС.Введение микропроцессора в модули превращало их в микрокомпьютеры,а крейты-в многопроцессорные системы, которые нуждаются в емкой памяти с большим количеством адресов.16 адресов в модуле КАМАК оказались совершенно недостаточными,поэтому ведущие электронные фирмы Motorola и Intel к середине 70х г.г.создали модульные системы 3го поколения:Versabus и Multibus,магистрали которых содержали 16,а затем и 20 адресных линий,что обеспечивало емкость системы около 1млн.адресов.
Потребовались и новые функции в логическом протоколе. Некоторые из процессорных модулей выполняли самые важные задачи в системе,а другие включались в работу реже, поэтому пришлось устанавливать приоритеты модулей на право занятия магистрали,а также разрешать конфликтные ситуации,когда 2 или больше модулей одновременно пытаются занять магистраль.
Для этого потребовались дополнительные линии.Чтобы ограничить общее количество линий,стали использовать одни и те же линии для передачи как адресов, так и данных:сначала передавали адрес(несколько битов которого являются адресом модуля),а затем линии переключали на регистр данных.Эти новшества заложили основы магистрально-модульных многопроцессорных информационно-измерительно-управляющих систем-МММИИУС.
Что было дальше.
Для завоевания мирового рынка Motorola быстро перевела свою систему на европейские конструктивы,назвав ее Versabus Module EuropeBus,сокращенно VME,а Intel в европейских же конструктивах выпустил новую систему Multibus-2,использовав новшества,реализованные в системе Fastbus,созданной
ядерными электронщиками США к 1982г.Во всех трех системах слова адреса и данных увеличены до 32х разрядов,что обеспечило емкость общей памяти системы в 4 млрд.адресов.
VME первой вышла на международный рынок,а более совершенная система Multibus-2 опоздала и не получила должного распространения,хотя эту аппаратуру начали выпускать более 100 фирм.Аппаратуру VME и ее улучшенные модификации выпускают более 300 фирм в разных странах,несмотря на архаичность базовой структуры системы.В России собирают модули VME,но на иностранных комплектующих и в небольших объемах.
В ПЭВМ также есть магистраль,обслуживающая процессор,
платы памяти и устройства ввода-вывода информации.В компьютере PS/2 фирмы IBM к магистрали "Microchannel" могут быть присоединены до восьми 16-разрядных процессорных модулей или до четырех 32-разрядных модулей. Архитектура "Microchanne" специализирована на структуру микропроцессоров Intel.
В стандарте Fastbus была определена локальная информационная сеть произвольной конфигурации,работающая в логическом протоколе,впервые едином для модулей, крейтов и сети.Скорость передачи информации через магистраль доведена до рекордного на те времена значения 80 Мбайт/сек.,для этого длительность фронтов импульсов пришлось уменьшить до 10 нс-
в 10 раз короче,чем в системе КАМАК.
Развитие МАГИСТРАЛЬНО-модульных систем завершает разработка с громким названием Futurebus("магистраль будущего")по стандарту США 1991г.В этой системе сделано одно принципиальное добавление,учитывающее особенность многопроцессорных компьютеров.В таких системах каждый микропроцессор имеет в своем распоряжении вспомогательную кэш-память.Во время выполнения параллельных программ у одного из процессоров появляется промежуточный результат, необходимый другим процессорам для дальнейшей работы.Этот результат нужно быстро передать в кэш-памяти нуждающихся процессоров.Процедура таких передач как раз и предусмотрена в стандарте Futurebus.
Отказ от магистрали-переход к РСИ.
Прогресс технологии микроэлектроники привел к тому,что в наше время размеры элементов в микросхемах
(транзисторов,резисторов,конденсаторов)удалось уменьшить до 0.6-0.8 мкм,а число элементов в одном кристалле увеличить до нескольких миллионов.Например,микропроцессор Pentium cодержит 3 млн. транзисторов,имеет соственную встроенную кэш-память и работает с частотой до 100 Мгц. Если несколько таких процессоров подсоединить к одной магистрали общего пользования,то их работа становится неэффективной:процессор,
быстро подготовивший промежуточный результат,занимает магистраль для передачи данных другому процессору,а остальные процессоры вынуждены простаивать в течение относительно медленной передачи.Магистраль,бывшая в
70-80х г.г. верхом достижений,к концу 80х годов стала узким местом,нужно было искать новое решение.
Специалисты,создававшие Fastbus и Futurebus+,в 1988 г. объединились для создания системы,способной решить новые задачи.Была начата разработка стандарта,известного сейчас как ANSI/IEEE Std 1596-1992 Scalable Coherent Interface-SCI,в русском переводе-Расширяемый Связный Интерфейс,РСИ.
Принцип магистрали общего пользования был отклонен в начале исследований.Решили,что в новой системе узлы следует соединять индивидуальными связями,причем информация должна передаваться по каналам связи только в одном направлении.Узел получает информацию из входного канала в дешифратор адреса.Если сообщение адресовано данному узлу,оно через дешифратор поступает в промежуточную память FIFO с очередью типа "первым вошло-первым вышло" и далее проходит на прикладные схемы узла для обработки,например,
микропроцессорами и транспьютерами.Если сообщение адресовано другому узлу,оно через проходную FIFO и переключатель передается в выходной канал к следующему узлу.Если ранее уже началась выдача обработанной информации из выходной FIFO,передача проходящей информации задерживается до окончания выдачи. Можно заметить,что узлы РСИ действуют подобно железнодорожному узлу:если со станции выходит поезд и выходной путь занят,то приходящий поезд направляют на запасной путь для отстоя;если же состав адресован именно этому узлу,то его вагоны сортируют и подают на разгрузочные пути.
Последний из цепочки узлов РСИ соединяется с первым узлом-образуется колечко из нескольких узлов связей.
Наименьшее колечко состоит из 2х узлов.Кольцеобразная структура позволяет любому узлу получать подтверждение в приеме своего сообщения.Для этого адресованный узел сразу же после приема сообщения вырабатывает эхо-сообщение и передает его в выходной канал,чтобы оно прошло по колечку к узлу,
вызвавшему первичное сообщение.Предусмотрены специальные узлы-агенты,имеющие выходы на боковые каналы, для соединения с другими колечками иными устройствами, выполняемыми в других стандартах.При помощи интерфейсных агентов конкретная система может быть расширена добавлением новых колечек с образованием сети произвольной конфигурации.РСИ является открытой системой, все составляющие которой работают в едином логическом протоколе и не требуют чуждых интерфейсов.
рис.5.Применение системы РСИ.
У-узел РСИ,А-агент,М-агент-мост,П-агент-переключатель,
РС-рабочая станция в стандарте РСИ,VME-крейт VME,
ПК-персональный компьютер,
ПКР-персональный компьютер в стандарте РС,
Э-сеть Ethernet.
Слово "связный" в названии системы означает,что в стандарте предусмотрены логические средства для образования связной группы кэш-памятей,получающих идентичную обновленную информацию.Связность устанавливается программно при помощи кодов-указателей адресов тех узлов,которые должны войти в связную группу. Затем процессор,создавший новую информацию,
быстро выполняет ее запись в основную память и в группу кэшей.
рис.6.Запомининие в кэшах связной кэш-строки при помощи
кодов-указателей адресов.
Система РСИ-модульная,но не магистральная.Поскольку магистраль общего пользования в ней не понадобилась,из аббревиатуры МММИИУС исчезла одна буква М.Физический облик ММИИУС в стандарте РСИ может быть очень разнообразным:от персональной рабочей станции до суперкомпьютера,содержащего тысячи микропроцессоров,и транспьютеров;от одиночного персонального компьютера в комнате до информационной сети протяженностью десятки километров,объединяющей множество компьютеров и измерительно-управляющих устройств.Для компоновки аппаратурных систем в стандарте определены каналы связи 2х типов.Для передачи сообщений между модулями в стандартизованном каркасе служат 18 параллельных печатных линий на задней плате.Передачи между обособленными узлами выполняются последовательными кодами-по коаксиальному кабелю на расстоянии десятки метров или по оптоволоконному кабелю на километры и более.Скорости передач рекордные:при параллельной передаче 1 Гбайт/сек на частоте 250 МГц,при последовательной-1 Гбит/сек.
Объем полного адреса-64 разряда,причем наиболее значимые 16 разрядов выражают адрес узла в целом,поэтому в аппаратурной системе максимальное число узлов может быть равно 2 =65536.Остальные 48 разрядов определяют допустимое число адресов в каждом узле-около 280 трлн. Если в каждом адресе хранить стандартное 64-разрядное слово данных,то максимальный объем информации в узле составит 1.8 трлн.
авторских листов по 40.000 знаков или 3.8 млрд.книг "Советский Энциклопедический словарь".На практике полный объем памяти не используют,но запас нужен для удобства программирования.Стандартом предусмотрены и малые дешевые системы с 32-разрядным адресом.В 1995 г. РСИ стал международным стандартом,он принят в качестве базовой системы в ВВС США и в ВМФ США и Канады.Благодаря агентам-мостам аппаратура РСИ будет соединена со старыми магистрально-модульными системами и уже существующими сетями.
Говоря языком рекламы,РСИ-мост в ХХ1 век-век информатики,основанной на модульных открытых информационных сетях.