ref-21437 (722023), страница 3

Файл №722023 ref-21437 (Матричные фотоприемники) 3 страницаref-21437 (722023) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

около 0,05 эВ.

Сглаживание гетеропереходов достигается применением буферных слоев

постоянного или переменного по толщине состава[1]. Оптимальным вариантом

здесь могут оказаться сверхрешеточные структуры, варизонность которых

сохраняется на больших длинах ~ 1,5 мкм.

Для реализации этой задачи нами были получены с помощью методики[2]

двойные гетероструктуры InSb – InSbBi.

Согласно[3], рост Bi-содержащих твердых растворов может происходить как

автоволновый концентрационный процесс в условиях потери устойчивости фронтом

кристаллизации. Нами был получен ряд образцов, состоящих из чередующихся

слоев InSb и InSb0.985Bi0.015. Перекристаллизация осуществлялась при Т = 693 К, grad

T = 30 К/cм движением плоской жидкой зоны усредненного состава In0.45Bi0.55 со

скоростью (6521 10) мкм/час. Общая толщина эпитаксиальной пленки InSb-InSbBi

составляла около 5,5 мкм. На рис. 1 приводится электронная микрофотография

поверхности выращенных образцов. Как отдельные слои, так и структура в целом

обладают высокой планарностью, толщины разных слоев близки. Слои InSb,

чередующиеся со слоями InSbBi, образуют правильную периодическую структуру с

периодом TSL = 120 нм.

Центр эпитаксиальной структуры либо свободен от дислокаций

несоответствия, либо содержит их незначительное количество. Измерение

удельного сопротивлениячетырехзон-довым методом показало, что концентрация

висмута по диаметру эпитаксиальных структур не изменялась. Поэтому можно

считать, что увеличение плотности дислокаций несоответствия связано с

радиальными градиентами в процессе роста структур, что обуславливает градации

интенсивности на электронной микрофотографии.

Рис. 1. Электронная микрофотография поверхности гетероструктуры

InSb – InSb 0.985 Bi 0.015 – .20000.

Измерения, проведенные на основе рентгенографических исследований,

показали, что суммарная толщина пары слоев InSb и InSbBi

d1 + d2 ≈ 120 нм.

Ширина запрещенной зоны в такой сверхрешетке при переходе от слоя к слою

модулируется по закону:

Eg(x) = (Eg1d1 + Eg2d2 )/(d1 + d2)

Рис. 2. Схема лавинного фотодиода на основе сверхрешетки InSb-InSbBi

При этом снимается проблема программированного изменения состава

твердого раствора на малых длинах (~ 0,1 мкм). Градиентный слой уменьшает

величину скачка в валентной зоне так, что ∆Е → 0 и длинновременная

составляющая релаксации фототока τp → 0. Быстродействие при этом может

сокращаться до значений ~ 1 нс. Структура такого лавинного фотодиода

представлена на рис. 2. Топологически такой прибор приводится к структуре

фотоприемника с растровыми электродами, изоляция между которыми выполнена

обратносмещенными p-n-переходами.

Таким образом, в технологии фотоприемных устройств инфракрасного

диапазона (спектры фотолюминесценции имеют максимум вблизи 8,7 мкм) могут

быть перспективны структуры типа «квантовой ямы».

3.5 Принципиальная схема

4.1Фоторезисторы

Фоторезисторами называют полупроводниковые приборы, проводимость которых меняется под действием света.

Конструкция монокристаллического и пленочного фоторезисторов показана на рис. 1, 2 приложения. Основным элементом фоторезистора является в первом случае монокристалл, а во втором – тонкая пленка полупроводникового материала.

Если фоторезистор включен последовательно с источником напряжения (рис. 3 приложения) и не освещен, то в его цепи будет протекать темновой ток

Iт = E / (Rт + Rн), (4)

где Е – э. д. с. источника питания; Rт – величина электрического сопротивления фоторезистора в темноте, называемая темновым сопротивлением; Rн – сопротивление нагрузки.

При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. Количество свободных электронно-дырочных пар возрастает, сопротивление фоторезистора падает и через него течет световой ток

Iс = E / (Rс + Rн). (5)

Разность между световым и темновым током дает значение тока Iф, получившего название первичного фототока проводимости

Iф = Iс – Iт. (6)

Когда лучистый поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине лучистого потока, падающего на фоторезистор. По мере возрастания величины лучистого потока увеличивается число электронов проводимости. Двигаясь внутри вещества, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости.

В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора.

4.2 Характеристики фоторезисторов

Основными характеристиками фоторезисторов являются:

Вольтамперная, характеризующая зависимость фототока (при постоянном световом потоке Ф) или темнового тока от приложенного напряжения. Для фоторезисторов эта зависимость практически линейна (рис. 4 приложения). Закон Ома нарушается в большинстве случаев только при высоких напряжениях на фоторезисторе.

Световая (люксамперная), характеризующая зависимость фототока от падающего светового потока постоянного спектрального состава. Полупроводниковые фотрезисторы имеют нелинейную люксамперную характеристику (рис. 5 приложения). Наибольшая чувствительность получается при малых освещенностях. Это позволяет использовать фоторезисторы для измерения очень малых интенсивностей излучения. При увеличении освещенности световой ток растет примерно пропорционально корню квадратному из освещенности. Наклон люксамперной характеристики зависит от приложенного к фоторезистору напряжения.

Спектральная, характеризующая чувствительность фоторезистора при действии на него потока излучения постоянной мощности определенной длины волны. Спектральная характеристика определяется материалом, используемым для изготовления светочувствительного элемента. Сернисто-кадмиевые фоторезисторы имеют высокую чувствительность в видимой

области спектра, селенисто-кадмиевые – в красной, а сернисто-свинцовые – в инфракрасной (рис. 6 приложения).

Частотная, характеризующая чувствительность фоторезистора при действии на него светового потока, изменяющегося с определенной частотой. Наличие инерционности у фоторезисторов приводит к тому, что величина их фототока зависит от частоты модуляции падающего на них светового потока – с увеличением частоты светового потока фототок уменьшается (рис. 7 приложения). Инерционность оганичивает возможности применения фоторезисторов при работе с переменными световыми потоками высокой частоты.

4.3Параметры фоторезисторов

Основные параметры фоторезисторов:

Рабочее напряжение Uр – постоянное напряжение, приложенное к фоторезистору, при котором обеспечиваются номинальные параметры при длительной его работе в заданных эксплуатационных условиях.

Максимально допустимое напряжение фоторезистора Umax – максимальное значение постоянного напряжения, приложенного к фоторезистору, при котором отклонение его параметров от номинальных значений не превышает указанных пределов при длительной работе в заданных эксплуатационных условиях.

Темновое сопротивление Rт – сопротивление фоторезистора в отсутствие падающего на него излучения в диапазоне его спектральной чувствительности.

Световое сопротивление Rс – сопротивление фоторезистора, измеренное через определенный интервал времени после начала воздействия излучения, создающего на нем освещенность заданного значения.

Кратность изменения сопротивления KR – отношение темнового сопротивления фоторезистора к сопротивлению при определенном уровне освещенности (световому сопротивлению).

Допустимая мощность рассеяния ­– мощность, при которой не наступает необратимых изменений параметров фоторезистора в процессе его эксплуатации.

Общий ток фоторезистора – ток, состоящий из темнового тока и фототока.

Фототок – ток, протекающий через фоторезистор при указанном напряжении на нем, обусловленный только воздействием потока излучения с заданным спектральным распределением.

Удельная чувствительность – отношение фототока к произведению величины падающего на фоторезистор светового потока на приложенное к нему напряжение, мкА / (лм · В)

К0 = Iф / (ФU), (7)

где Iф – фототок, равный разности токов, протекающих по фоторезистору в темноте и при определенной (200 лк) освещенности, мкА; Ф – падающий световой поток, лм; U – напряжение, приложенное к фоторезистору, В.

Интегральная чувствительность – произведение удельной чувствительности на предельное рабочее напряжение Sинт = К0Umax.

Постоянная времени ф – время, в течение которого фототок изменяется на 63%, т. е. в e раз.

Постоянная времени характеризует инерционность прибора и влияет на вид его частотной характеристики.

При включении и выключении света фототок возрастает до максимума (рис. 8 приложения) и спадает до минимума не мгновенно. Характер и длительность кривых нарастания и спада фототока во времени существенно зависят от механизма рекомбинации неравновесных носителей в данном материале, а также от величины интенсивности света. При малом уровне инжекции нарастание и спад фототока во времени можно представить экспонентами с постоянной времени , равной времени жизни носителей в полупроводнике. В этом случае при включении света фототок iф будет нарастать и спадать во времени по закону

iф = Iф (1 – e – t / ); iф = Iф e – t / , (8)

где Iф – стационарное значение фототока при освещении.

По кривым спада фототока во времени можно определить время жизни  неравновесных носителей.

4.4 Изготовление фоторезисторов

В качестве материалов для фоторезисторов широко используются сульфиды, селениды и теллуриды различных элементов, а также соединения типа AIIIBV. В инфракрасной области могут быть использованы фоторезисторы на основе PbS, PbSe, PbTe, InSb, в области видимого света и ближнего ультрафиолета – CdS.

4.5 Применение фоторезисторов

В последние годы фоторезисторы широко применяются во многих отраслях науки и техники. Это объясняется их высокой чувствительностью, простотой конструкции, малыми габаритами и значительной допустимой мощностью рассеяния. Значительный интерес представляет использование фоторезисторов в оптоэлектронике

5.1 Устройство и основные узлы фотоэлектронного умножителя

Фотоэлектронный умножитель (ФЭУ) . очень распространенный и во

многих случаях незаменимый детектор излучения. Он позволяет регистрировать и

предельно слабые и довольно интенсивные потоки. От единиц до 10101012

фотонов в секунду. Постоянная времени . порядка 10–810–10 с, т.е. допускает

весьма высокие частоты модуляции. Может быть размещен на воздухе и в

Характеристики

Тип файла
Документ
Размер
642 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее