L10_15_2002 (722013), страница 5

Файл №722013 L10_15_2002 (Лекции по твердотельной электронике) 5 страницаL10_15_2002 (722013) страница 52016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 5)

(4_92)

В (4_92) выделены два сомножителя первый характеризует перенос носителей заряда через базу, второй способность эмттера инжектировать неосновные носители заряда. С другой стороны для коэффициента передачи тока мы можем записать α = κγ, Поэтому логично, сравнив два выражения записать для коэффициентов переноса - κ и инжекции - γ следующие выражения:

(4_93)

Для того, чтобы проиллюстрировать влияние w/Lp положим коэффициент инжекции эмиттера равным единице и рассчитаем коэффициент передачи по току в ОБ рис.62а и ОЭ рис.62б. Как видно из графика для того, чтобы коэффициент передачи по току был высоким необходимо, чтобы толщина базы была значительно меньше диффузионной длины, с физической точки зрения это означает, что инжектированные носители заряда должны доходить до коллектора без значительных потерь на рекомбинацию. В настоящее время условие w/Lp<<1 хорошо выполняется только для двух материалов Si и Ge, поэтому именно эти материалы могут быть использованы для создания биполярных транзисторов.



Рис. 62 Зависимость коэффициента передачи по току в схеме ОБ (α) от толщины базы (при γ ~ 1)

Как известно ширина ОПЗ эмиттерного и коллекторного переходов зависят от приложенного напряжения. При изменении напряжения на переходе изменяется и ширина области пространственного заряда и соответственно должна изменяться ширина базы. Поскольку база обычно легирована значительно слабее, чем эмиттер и коллектор ширина ОПЗ со стороны базовой области должна быть значительно больше, чем со стороны эмиттерной или коллекторной области, т.е. можно считать что расширение перехода имеет место за счет его расширения в базовую область.

Предположим, что напряжение на коллекторе увеличилось, тогда ширмна базы должна уменьшиться, тогда как следует из (4_93) и возрастет коэффициент переноса - κ и соответственно возрастет коэффициент передачи транзистора по току Ki, причем в схеме ОЭ этот эффект будет сильнее, чем в схеме с ОЭ см. рис. 62. Возрастание Ki будет сопровождаться ростом коллекторного тока, что будет проявляться как уменьшение коллекторного сопротивления транзистора, причем в схеме ОЭ этот эффект будет сильнее чем в схеме ОБ.

Как следует из (4_93) коэффициент инжекции эмиттерного перехода γ зависит от соотношения проводимости эмиттера и базы. Увеличение проводимости базы будет приводит к уменьшению коэффициента инжеции неосновных носителей заряда и соответственно уменьшению коэффициента Ki. При увеличении тока эмиттера в базу транзистора инжектируются дополнительные носители заряда, что приводит к увеличению ее проводимости σn = σn + Δσn (для pnp транзистора), где Δσn - возрастание проводимости за счет инжектированных носителей. Таким образом в соответствии с (4_93) с ростом тока эмиттера коэффициент передачи по току будет падать, что особенно будет заметно для схемы с общим эмиттером.

Типиная зависимость коэффициента передачи по току при изменении тока через эмиттерный переход в широких пределах показана на рис. 63. Эта зависимость еще раз влияние режима по постоянному току (положения рабочей точки) на параметры транзистора.



Рис. 63 Типичная зависимость коэффициента передачи по току в схеме ОБ (α) и ОЭ (β) от входного тока

4.5.2. Тепловой ток транзистора (обратный коллекторного перехода)

Неуправляемый ток коллекторного перехода Jко (Jкоб) имеет сильную зависимость от температуры, поэтому его часто называют тепловым током транзистора. Этот ток протекает через базовую цепь транзистора и поэтому неуправляемый тепловой ток коллектора в схеме ОЭ будет значительно выше чем в схеме ОБ: Jкоэ = Jкоб(β+1). Изменение теплового тока с температурой может в усилительных каскадах приводить к изменению положения рабочей точки, поэтому принимаются специальные меры для её температурной стабилизации.

Зависимость Jко от конструктивных параметров транзистора дается (4_91):

Допустим, что транзистор является симметричным, т.е. технологические параметры эмиттерной области такие же как и коллекторно, тогда : a12 = a21, a11 = a22. Кроме того учтем, что легирование эмиттерной и коллекторой областей значительно сильнее, чем базовой тогда pp>>nn и соответственно pn>>np, что позволяет в a11 a22 оставить только один член с неосновными носителями.

(4_94)

Подставив в выражение для Jко из a12=a21 из (4_87) и a11 = a22 из (4_94) получим:

Так как w/Lp << 1, то th(w/Lp) ~ w/Lp и для Jко можно записать:

(4_95)

Таким образом при сделанных допущениях Jко совпадает с a11 = a22 (см. 4_94) и соответственно будет равен ирку Jэо.

Как видно из (4_95) тепловой ток транзистора определяется тепловой генерацией неосновных носителей в базе транзистора, причем чем уже база, тем меньше тепловой ток.

4.5.3. Дифференциальное сопротивление эмиттерного перехода - rэ

Дифференциальное сопротивление эмиттерного перехода rэ является одним из элементов физической эквивалентной схемы транзистора. Рассчитаем как оно зависит от тока эмиттера (положения рабочей точки). Для активной области (Uэб>0 и Uкб<0) для входной характеристики с хорошей точностью можно записать:

(4_96)

Из (4_96) следует:

(4_97)

4.5.4. Дифференциальное сопротивление коллекторного перехода - rк



Рис. 64 Диаграмма, иллюстрирующая изменение ширины базы транзистора при изменении ширины ОПЗ коллекторного перехода при увеличении коллекторного напряжения (Uкб2>Uкб1).

Основным фактором влияющим на величину коллекторного сопротивления является эффект модуляции толщины базы изменяющимся напряжением коллекторного перехода. При увеличении коллекторного тока область ОПЗ расширяется и ширина базы уменьшается, что сопровождается возрастанием коэффициента передачи транзистора по току и соответственно ростом коллекторного тока. Для коллекторного сопротивления можно записать:

(4_98)

Изменение ширины базы примерно равно изменению ширины ОПЗ коллекторного перехода (см. рис. ):

dw(Uкб) = - dl(Uкб) (4_99)

Принимая во внимание, что легирование коллектора значительно выше легирования базы и используя формулу ( ) для барьерной емкости перехода получим:

(4_100)

Таким образом получено выражение для второго сомножителя в уравнении (4_98). Рассчитаем теперь первый сомножитель.

(4_101)

Подставив результирующие выражения (4_101) и (4_100) в (4_98) получим:

(4_102)

Откуда:

(4_103)

Таким образом rк возрастает с увеличением коллекторного напряжения ( пропорционально √Uкб) и уменьшается при увеличении тока эмиттера (соответственно и тока коллектора), т.е. при больших токах наклон выходных характеристик возрастает (веерообразность характеристик особенно заметна в схеме ОЭ при изменении коллекторного тока в широких пределах). Рис. иллюстрирует соответствующие (4_103) зависимости rк от коллекторного напряжения и тока эмиттера.



Рис. 65. Зависимость rк от напряжения коллектора и тока эмиттера (Uк2>Uк1, Iэ2>Iэ1)

Лекция 15

3.6. Частотные характеристики биполярного транзистора.

3.6.1. Зависимость коэффициента передачи тока от частоты в схеме с общей базой [α(ω)].

При анализе временных процессов в биполярном транзисторе необходимо решать уравнение нестационарное уравнение непрерывности, описывающее изменение концентрации носителей заряда со временем. В сделанных нами допущениях это уравнение сведется к диффузионному:

(4_104)

При этом граничные условия так же будут зависеть от времени для u(t)<

(4_105)

Будем считать, помимо постоянного смещения к переходу приложено малое синусоидальное напряжение u = U0eiωt и соответственно будем искать решение (4_104) в виде Δp = Δp0 eiωt. Подставив ∂Δp/∂t и Δp в уравнение (4_104) получим:

(4_106)

Обозначим 1/(1+ωτp) как Λ2p, диффузионную длину зависящую от частоты, тогда уравнение (4_106) примет такой же вид как решенное нами ранее для транзистора стационарное уравнение:

(4_107)

Формальное соответствие (4_107) и решенного нами ранее для биполярного транзистора стационарного уравнения позволяет нам воспользоваться результатами решения для нахождения частотной зависимости параметров, заменив в решении L2p на L2p/(1+iωτp)1/2. Для частотной зависимости коэффициента переноса заряда через базу, который отражает инерционность дрейфа получим:

(4_108)

Пренебрегая частотной зависимостью γ и считая, что (1-α0) ~ (1- κ0) получим уравнение для частотной зависимости коэффициента передачи тока в схеме с общей базой:

, (4_109)

где τα = (1-κ0) τp ~(1-α0) τp. Введем характеристическую частоту ωα = 1/ τα. Тогда:

(4_110)

Через θ обозначен угол, характеризующий запаздывание выходного сигнала относительно входного. Как видно из (4_110) ωα соответствует частоте, на которой амплитуда выходного тока по отношению к входному снижается в √2 раз, эту частоту часто называют предельной частотой усиления транзистора по току.

Оценим как τα и соответственно ωα зависят от параметров базы транзистора:

(4_111)

Соответственно:

(4_112)

Таким образом из полученные формулы еще раз подтверждают решающее влияние толщины базы на частотные характеристики транзистора. Так, например создание технологии уменьшающей толщину базы в два раза, должно привести к увеличению предельной частоты в четыре раза.

3.6.2. Зависимость коэффициента передачи тока от частоты в схеме с общим эмиттером [β(ω)].

Рассчитаем как зависит от частоты коэффициент передачи по току в транзисторе, включенном по схеме с общим эмиттером. При этом используем рассчитанную зависимость α(ω) (4_109):

(4_113)

Воспользуемся соотношениями β00/(1- α0), τα ~ (1-α0) τp, ωβ=1/τp для преобразования (4_113) :

(4_114)

Соотношения (4_114) по структуре аналогичны соотношениям для схемы ОБ (4_110), однако для схемы ОЭ характеристическое время τp будет в (β+1) раз больше, а характеристическая частота ωβ в (β+1) раз ниже, т.е. в схеме ОЭ спад коэффициента передачи по току с частотой будет происходить быстрее.

Пример частотных зависимостей коэффициентов передачи тока в ОБ и ОЭ приведен на рис. 66. Следует обратить внимание на то, что несмотря на то, что коэффициент передачи тока в ОЭ спадает быстрее, чем в ОБ, тем не менее во всем частотном диапазоне он имеет более высокие значения.

Р
ис. 66 Частотная зависимость модуля коэффициентов передачи по току в схеме ОБ - α и ОЭ - β.

Характеристики

Тип файла
Документ
Размер
1,35 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6390
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее