135396 (721952), страница 4

Файл №721952 135396 (История развития электроники) 4 страница135396 (721952) страница 42016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

4.4.4

В 1963 г. Хофштейн и Хайман описали другую конструкцию полевого транзистора, где используется поле в диэлектрике, расположенном между пластиной полупроводника и металлической пленкой. Такие транзисторы со структурой металл-диэлектрик-полупроводник называются МДП-транзисторы. В период с 1952 по 1970 гг. полевые транзисторы оставались на лабораторной стадии развития. Три фактора способствовали стремительному развитию полевых транзисторов в 70-е годы:

1) Развитие физики полупроводников и прогресс в технологии полупроводников, что позволило получить приборы с заданными характеристиками.

2) Создание новых технологических методов, таких как тонкопленочные технологии для получения структуры с изолированным затвором.

3) Широкое внедрение транзисторов в электрическое оборудование.

4.5 История развития серийного производства транзисторов в США и СССР

4.5.1

Ускоренная разработка и производство транзисторов развернулись в США в кремниевой долине, расположенной в 80-ти км от Сан-Франциско. Возникновение кремниевой долины связывают с именем Ф. Термена – декана инженерного факультета Стенфордского университета, когда его студенты Хьюлетт, Паккард и братья Вариан создали фирмы, прославившие их имена во время второй мировой войны.

Бурное развитие кремниевой долины началось, когда Шокли покинул "BTL" и основал собственную фирму по производству кремниевых транзисторов при финансовой помощи питомца Калифорнийского политехнического института А. Беккмана. Его фирма начала работу осенью 1955 г., как отделение фирмы "Beckman Instruments" в армейских казармах Паоло-Алто. Шокли пригласил 12 специалистов (Хорсли, Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Джонс, Клейнер, Блэнк, Нэпик, Са). В 1957 г. фирма изменила свое название на "Shockly Transistor Corporation". Вскоре 8 специалистов (Нойс, Мур, Гринич, Робертс, Хорни, Ласт, Клейнер, Блэнк) договорились с Беккманом и создали отдельную самостоятельную фирму "Fairchild Semiconductor Corporation" в основе деятельности, которой лежало массовое производство высококачественных кремниевых биполярных транзисторов. В качестве первого изделия был выбран в 1957 г. кремниевый n-p-n мезатранзистор с двойной диффузией типа 2N696. Он требовал всего лишь два процесса фотолитографии для создания эмиттера и металлических контактов. Термин мезатранзистор был предложен Эрли из "BTL". Введя дополнительную операцию фотолитографии, Хорни заменил мезаструктуру коллектора диффузионным карманом и закрыл место пересечения эмиторного и коллекторного переходов с поверхностью термическим оксидом(1000 oС). Технологию таких транзисторов Хорни назвал планарным процессом. В 1961 г. был начат крупносерийный выпуск двух планарных кремниевых биполярных транзисторов 2N613(n-p-n), 2N869(p-n-p)

Институт полупроводниковых материалов и оборудования (США) составил генеалогическое дерево и первые ветви отпочкованные от фирмы Shockley выглядят так: Ласт и Хорни в 1961 году основали Amelco, которая позже превратилась в Teledyne Semiconductor. Хорни в 1964 году создал Union Corbide Electronics, в 1967 году – Intersil. Ежегодно создавалось по четыре фирмы, и за период с 1957 по 1983 г. в кремниевой долине было создано более 100 фирм. Рост продолжается и сейчас. Он стимулируется близостью Стенфордского и Калифорнийского университета и активным участием их сотрудников в деле организации фирм (Рис. 4.9).

Рис. 4.9 Динамика развития кремниевой долины.

1914–1920 гг

1955 – 57 гг

1960 г

1961 г

1968 г

Хьюлетт-Пакард (два друга и братья Вариан)

BTL

Shockley Semiconductor

Laboratory

(Beckman Instruments) Паоло Алто(военные казармы).

Са

Хорсли

Джонс 12 чел.

Нэпик

Нойс

Мур

Гринич

Робертс

Хорни

Ласт

Клейнер

Блэнк

Fairchild

Semiconductor

Corporation

8 чел.

Amelco +

Уэнлесс

Сноу

Эндрю Гроув

Дил

Intel(Интергрейтед электроникс)

12 чел.

(Маунтин Вью)

4.5.2

Первыми транзисторами выпущенными отечественной промышленностью были точечные транзисторы, которые предназначались для усиления и генерирования колебаний частотой до 5 МГц. В процессе производства первых в мире транзисторов были отработаны отдельные технологические процессы и разработаны методы контроля параметров. Накопленный опыт позволил перейти к выпуску более совершенных приборов, которые уже могли работать на частотах до 10 МГц. В дальнейшем на смену точечным транзисторам пришли плоскостные, обладающие более высокими электрическими и эксплуатационными качествами. Первые транзисторы типа П1 и П2 предназначались для усиления и генерирования электрических колебаний с частотой до 100 кГц. Затем появились более мощные низкочастотные транзисторы П3 и П4 применение которых в 2-х тактных усилителях позволяло получить выходную мощность до нескольких десятков ватт. По мере развития полупроводниковой промышленности происходило освоение новых типов транзисторов, в том числе П5 и П6, которые по сравнению со своими предшественниками обладали улучшенными характеристиками. Шло время, осваивались новые методы изготовления транзисторов, и транзисторы П1 – П6 уже не удовлетворяли действующим требованиям и были сняты с производства. Вместо них появились транзисторы типа П13 – П16, П201 – П203, которые тоже относились к низкочастотным непревышающим 100 кГц. Столь низкий частотный предел объясняется способом изготовления этих транзисторов, осуществляемым методом сплавления. Поэтому транзисторы П1 – П6, П13 – П16, П201 – П203 называют сплавными. Транзисторы способные генерировать и усиливать электрические колебания с частотой в десятки и сотни МГц появились значительно позже – это были транзисторы типа П401 – П403, которые положили начало применению нового диффузионного метода изготовления полупроводниковых приборов. Такие транзисторы называют диффузионными. Дальнейшее развитие шло по пути совершенствования как сплавных, так и диффузионных транзисторов, а так же созданию и освоению новых методов их изготовления.

5. Предпосылки появления микроэлектроники

5.1 Требования миниатюризации электрорадиоэлементов со стороны разработчиков радиоаппаратуры.

С появлением биполярных полевых транзисторов начали воплощаться идеи разработки малогабаритных ЭВМ. На их основе стали создавать бортовые электронные системы для авиационной и космической техники. Так как эти устройства содержали тысячи отдельных ЭРЭ(электрорадиоэлементов) и постоянно требовалось все большее и большее их увеличение, появились и технические трудности. С увеличением числа элементов электронных систем практически не удавалось обеспечить их работоспособность сразу же после сборки, и обеспечить, в дальнейшем, надежность функционирования систем. Даже опытные сборщики и наладчики ЭВМ допускали несколько ошибок на 1000 спаек. Разработчики предполагали новые перспективные схемы, а изготовители не могли запустить эти схемы сразу после сборки т.к. при монтаже не удавалось избежать ошибок, обрывов в цепи за счет не пропаев, и коротких замыканий. Требовалась длинная и кропотливая наладка. Проблема качества монтажно-сборочных работ стало основной проблемой изготовителей при обеспечении работоспособности и надежности радиоэлектронных устройств. Решение проблемы межсоединений и явилось предпосылкой к появлению микроэлектроники. Прообразом будущих микросхем послужила печатная плата, в которой все одиночные проводники объединены в единое целое и изготавливаются одновременно групповым методом путем стравливания медной фольги с плоскостью фольгированного диэлектрика. Единственным видом интеграции в этом случае являются проводники. Применение печатных плат хотя и не решает проблемы миниатюризации, однако решает проблему повышения надежности межсоединений. Технология изготовления печатных плат не дает возможности изготовить одновременно другие пассивные элементы кроме проводников. Именно поэтому печатные платы не превратились в интегральные микросхемы в современном понимании. Первыми были разработаны в конце 40-х годов толстопленочные гибридные схемы, в основу их изготовления была положена уже отработанная технология изготовления керамических конденсаторов, использующая метод нанесения на керамическую подложку через трафареты паст, содержащих порошок серебра и стекла. Переход к изготовлению на одной подложке нескольких соединенных между собой конденсаторов, а затем соединение их с композиционными резисторами, наносимыми также с помощью трафарета, с последующим вжиганием привело к созданию гибридных схем, состоящих из конденсаторов и резисторов. Вскоре в состав гибридных схем были включены и дискретные активные и пассивные компоненты: навесные конденсаторы, диоды и транзисторы. В дальнейшем развитии гибридных схем навесным монтажем были включены сверхминиатюрные электровакуумные лампы. Такие схемы получили название толстопленочные гибридные интегральные микросхемы (ГИС). Тонкопленочная технология производства интегральных микросхем включает в себя нанесение в вакууме на гладкую поверхность диэлектрических подложек тонких пленок различных материалов(проводящих, диэлектрических, резистивных).

В 60-е годы огромные усилия исследователей были направлены на создание тонкопленочных активных элементов. Однако надежно работающих транзисторов с воспроизводимыми характеристиками никак не удавалось получить, поэтому в тонкопленочных ГИС продолжают использовать активные навесные элементы. К моменту изобретения интегральных микросхем из полупроводниковых материалов уже научились изготавливать дискретные транзисторы и резисторы. Для изготовления конденсатора уже использовали емкость обратно смещенного p-n перехода. Для изготовления резисторов использовались омические свойства кристалла полупроводника. На очереди стояла задача объединить все эти элементы в одном устройстве.

5.2 Основы развития технологии микроэлектроники.

5.2.1

Развитие микроэлектроники определяется уровнем достигнутой микротехнологии.

Планарная технология. При планарной технологии требуется обеспечить возможность создания рисунка тонких слоев из материала с различными электрическими характеристиками, чтобы получить электронную схему. Важная особенность планарной технологии заключается в ее групповом характере: все интегральные схемы (ИС) на пластине изготавливают в одном технологическом цикле, что позволяет одновременно получать несколько полупроводниковых схем.

5.2.1.1

Технологические процессы получения тонких пленок.


1) Эпитаксия (упорядочение) – процесс наращивания на кристаллической подложке атомов упорядоченных в монокристаллическую структуру. с тем чтобы структура наращиваемой пленки полностью повторила кристаллическую ориентацию подложки. Основное достоинство техники эпитаксии состоит в возможности получения чрезвычайно чистых пленок при сохранении возможности регулирования уровня легирования. Применяют три типа эпитаксиального наращивания: газовую, жидкостную и молекулярную.


При газовой эпитаксии водород с примесью четырех хлористого кремния (SiCl4 + H2) с контролируемой концентрацией пропускают через реактор (Рис. 5.1), в котором на графитовом основании (1) расположены кремниевые пластины (2). С помощью индукционного нагревателя графит прогревается выше 1000 0С эта температура необходима для обеспечения правильной ориентации осаждаемых атомов в решетке и получении монокристаллической пленки. В основе процесса лежит обратимая реакция: SiCl4 + 2H2 ↔ Si + 4HCl – прямая реакция соответствует получению эпитаксиальной пленки, обратная реакция травлению подложки. Для легирования эпитаксиальной пленки в газовый поток добавляют примесные атомы. Фосфорит (PH3) используют в качестве донорной примеси, а диборан (B2 H3) в качестве акцепторной примеси.

Характеристики

Тип файла
Документ
Размер
469 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее