135396 (721952), страница 3

Файл №721952 135396 (История развития электроники) 3 страница135396 (721952) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

Два из этих электродов называющиеся, эмиттером (Э) и коллектором (К), являются выпрямителями с точечным контактом и располагаются в непосредственной близости друг от друга на верхней поверхности. Третий электрод, большой площади и маленького радиуса, нанесен на основание – базу (Б). Использовался Ge n–типа. Точечные контакты изготовлялись как из Вольфрама так и из фосфористой бронзы. Каждый точечный контакт в отдельности вместе с электродом базы образует выпрямитель с высоким обратным сопротивлением. Ток, направление которого по отношению ко всему объему кристалла является прямым, создается дырками т.е. носителями, имеющими противоположный знак по отношению к носителям обычно присутствующим в избытке внутри объема Ge. Когда два точечных контакта расположены очень близко друг к другу и к ним приложено постоянное напряжение, контакты оказывают взаимное влияние друг на друга. Благодаря этому влиянию возможно использовать данное устройство для усиления сигнала переменного тока. Электрическая цепь с помощью которой можно этого добиться показана на Рис. 4.1 К эмиттеру приложено небольшое положительное напряжение в прямом направлении, которое вызывает ток в несколько миллиампер через поверхность. К коллектору прикладывается обратное напряжение, достаточно большое для того чтобы ток коллектора был равным или больше тока эмиттера(Ik ≥ Iэ). Знак напряжения на коллекторе таков, что он притягивает дырки идущие от эмиттера. В результате большая часть тока эмиттера проходит через коллектор. Коллектор создает большое сопротивление для электронов текущих в полупроводник, и почти не препятствует потоку дырок в точечный. Если ток эмиттера модулировать напряжением сигнала, то это приводит к соответствующему изменению тока коллектора. Была получена большая величина отношения выходного напряжения к входному, такого же порядка, что и отношение импедансов, выпрямляющего точечного контакта в обратном и прямом направлении. Таким образом возникает соответствующее усиление мощности выходного сигнала. Получили выигрыш в мощности в 100 раз. Подобные устройства работали как усилители при частотах вплоть до 10 МГц(мегагерц)."

Устройство изобретенное Бардиным и Браттейном было названо точечным транзистором типа А и представлял собой конструкцию представленную на Рис. 4.2 Где (1) кристалл Германия, (2) вывод эмиттера, (3) вывод базы. Усиление сигнала осуществлялось за счет большого различия в величинах сопротивления, низкоомного входного и высокоомного выходного. Поэтому создатели нового прибора назвали его сокращенно – транзистором (в пер. с английского – "преобразователь сопротивления").








4.2 Изобретение плоскостного биполярного транзистора.

Одновременно, в период апрель 1947 – январь 1948 г., Шокли опубликовал теорию плоскостных биполярных транзисторов. Рассмотрев полупроводниковые выпрямительные устройства из кристаллов полупроводника, имеющего переход между областями p- и n- типа.(Рис. 4.3)

Такое устройство, называемое плоскостным полупроводниковым выпрямителем, обладает малым сопротивлением, когда р-область – положительна по отношению к n-области. Характеристики плоскостного выпрямителя можно точно определить теоретически. По сравнению с точечным, плоскостной выпрямитель допускает большую нагрузку т.к. площадь контакта можно сделать достаточно большой. С другой стороны с увеличением площади растет шунтирующая контактная емкость. Далее Шокли рассмотрел теорию плоскостного транзистора из кристалла полупроводника, содержащего два p-n перехода (Рис. 4.4) Положительная р-область является эмиттером, отрицательная р-область коллектором, n-область представляет собой базу. Таким образом вместо металлических точечных контактов используются две p-n области. В точечном транзисторе два металлических точечных контакта необходимо было располагать очень близко друг к другу, и в плоскостном транзисторе оба перехода должны располагаться очень близко друг к другу. Область базы очень тонкая – менее 25 мкм. Плоскостные транзисторы обладают рядом преимуществ перед точечными: они более доступны теоретическому анализу, обладают более низким уровнем шумов, обеспечивают большую мощность. Для нормальной работы транзистора, как усилителя, необходимо чтобы на эмиттер было подано прямое, а на коллектор обратное смещение, по отношению к базе. Для p-n-p транзистора условие соответствует – положительному эмиттеру и отрицательному коллектору. Для n-p-n – обратные полярности т.е. отрицательный эмиттер и положительный коллектор.

Изобретение транзисторов явилось знаменательной вехой в истории развития электроники и поэтому его авторы Джон Бардин, Уолтер Браттейн и Уильям Шокли были удостоины нобелевской премии по физике за 1956 г.



+



4.3 Предпосылки появления транзисторов.

Появление транзисторов – это результат кропотливой работы десятков выдающихся ученых и сотен виднейших специалистов, которые в течении предшествующих десятилетий развивали науку о полупроводниках. Среди них были не только физики, но и специалисты по электронике, физхимии, материаловедению.

Начало серьезных исследований относится к 1833 году, когда Майкл Фарадей работая с сульфидом серебра обнаружил, что проводимость полупроводников растет с повышением температуры, в противоположность проводимости металлов, которая в этом случае уменьшается.

В конце XIX века были установлены три важнейших свойства полупроводников:

  1. Появление ЭДС при освещении полупроводника.

  2. Рост электрической проводимости полупроводника при освещении.

  3. Выпрямляющее свойство контакта полупроводника с металлом.

В 20-е годы ХХ в. выпрямляющие свойства контакта полупроводников с металлом начали практически использовать в радиотехнике. Радиоспециалисту из Нижегородской радиотехнической лаборатории Олегу Лосеву в 1922 году удалось применить выпрямляющее устройство на контакте стали с кристаллом цинкита в качестве детектора, в детекторном приемнике под названием "Кристадин". Схема кристадина (Рис. 4.5) содержит входной настраиваемый контур L1C1 к которому подключена внешняя антенна А и заземление. С помощью переключателя П1 параллельно входному контуру подключается детектор Д1. Такой детектор может не только детектировать, но и предварительно усиливать сигнал, когда его рабочая точка находится на падающем участке ВАХ (Рис. 4.5(б)). На этом участке ВАХ сопротивление детектора становится отрицательным, что приводит к частичной компенсации потерь в контуре L1C1 и тогда приемник становится генератором.





Потенциометр R1 регулирует ток детектора. Прослушивание сигналов принятых радиостанцией осуществляется на низкоуровневый телефон, катушки которого включены последовательно с источником питания через дроссель Др 1 и катушку L2.

Первый образец кристадина был изготовлен Лосевым в 1923 году. В это время в Москве начала работать центральная радиотелефонная станция, передачи которой можно было принимать на простые детекторные приемники только вблизи столицы. Кристадин Лосева позволял не только увеличить дальность приема радиостанции, но был проще и дешевле. Интерес к кристадину в то время был огромный. "Сенсационное изобретение" – под таким заголовком американский журнал "Radio News" напечатал в сентябре 1924 г. редакционную статью посвященную работе Лосева. "Открытие Лосева делает эпоху", – писал журнал, выражая надежду, что сложную электровакуумную лампу вскоре заменит кусочек цинкита или другого вещества простого в изготовлении и применении.

Продолжая исследование кристаллических детекторов, Лосев открыл свечение карборунда при прохождении через него электрического тока. Спустя 20 лет это же явление было открыто американским физиком Дестрио и получило название электролюминесценции. Важную роль в развитии теории полупроводников в начале 30-х годов сыграли работы проводимые в России под руководством академика А.Ф. Иоффе. В 1931 году он опубликовал статью с пророческим названием: "Полупроводники – новые материалы электроники". Немалую заслугу в исследование полупроводников внесли советские ученые – Б.В. Курчатов, В.П. Жузе и др. В своей работе – "К вопросу об электропроводности закиси меди", опубликованной в 1932 году, они показали, что величина и тип электрической проводимости определяется концентрацией и природой примеси. Немного позднее, советский физик – Я.Н. Френкель создал теорию возбуждения в полупроводниках парных носителей заряда: электронов и дырок. В 1931 г. англичанину Уилсону удалось создать теоретическую модель полупроводника, основанную на том факте, что в твердом теле дискретные энергетические уровни электронов отдельных атомов размываются в непрерывные зоны, разделенные запрещенными зонами (значениями энергии, которые электроны не могут принимать) – "зонная теория полупроводников".

В 1938 г. Мотт в Англии, Давыдов в СССР, Вальтер Шоттки в Германии сформулировали, независимо, теорию выпрямляющего действия контакта металл-полупроводник. Эта обширная программа исследований, выполняемая учеными разных стран и привела к экспериментальному созданию сначала точечного, а затем и плоскостного транзистора.

4.4 История развития полевых транзисторов.

4.4.1 Первый полевой транзистор был запатентован в США в 1926/30гг., 1928/32гг. и 1928/33гг. Лилиенфельд – автор этих потентов. Он родился в 1882 году в Польше. С 1910 по 1926 г. был профессором Лейпцигского университета. В 1926 г. иммигрировал в США и подал заявку на патент.

Предложенные Лилиенфельдом транзисторы не были внедрены в производство. Транзистор по одному из первых патентов № 1900018 представлен на Рис. 4.6



Наиболее важная особенность изобретения Лилиенфельда заключается в том, что он понимал работу транзистора на принципе модуляции проводимости исходя из электростатики. В описании к патенту формулируется, что проводимость тонкой области полупроводникового канала модулируется входным сигналом, поступающим на затвор через входной трансформатор.

4.4.2

В 1935 году в Англии получил патент на полевой транзистор немецкий изобретатель О. Хейл

Схема из патента № 439457 представлена на Рис. 4.7 где:

1 – управляющий электрод

2 – тонкий слой полупроводника(теллур, йод, окись меди, пятиокись ванадия)

3,4 – омические контакты к полупроводнику

5 – источник постоянного тока

6 – источник переменного напряжения


7 – амперметр



Управляющий электрод (1) выполняет роль затвора, электрод (3) выполняет роль стока, электрод (4) роль истока. Подавая переменный сигнал на затвор, расположенный очень близко к проводнику, получаем изменение сопротивления полупроводника (2) между стоком и истоком. При низкой частоте можно наблюдать колебание стрелки амперметра (7). Данное изобретение является прототипом полевого транзистора с изолированным затвором.

4.4.3

Следующий период волны изобретений по транзисторам наступил в 1939 году, когда после трехлетних изысканий по твердотельному усилителю в фирме "BTL" (Bell Telephone Laboratories) Шокли был приглашен включиться в исследование Браттейна по медноокисному выпрямителю. Работа была прервана второй мировой войной, но уже перед отъездом на фронт Шокли предложил два транзистора. Исследования по транзисторам возобновились после войны, когда в середине 1945 г. Шокли вернулся в "BTL", а в 1946 г. туда же пришел Бардин.

В 1952 г. Шокли описал униполярный(полевой) транзистор с управляющим электродом, состоящим, как показано на рис. 4.8, из обратно смещенного p-n – перехода. Предложенный Шокли полевой транзистор состоит из полупроводникового стержня n-типа (канал n-типа) с омическими выводами на торцах. В качестве полупроводника использован кремний(Si). На поверхности канала с противоположных сторон формируется p-n-переход, таким образом, чтобы он был параллелен направлению тока в канале. Рассмотрим как течет ток между омическими контактами истока и стока. Проводимость канала определяют основные носители заряда для данного канала. В нашем случае электроны в канале n-типа. Вывод, от которого носители начинают свой путь, называется истоком. На рис. 4.8 – это отрицательный электрод. Второй омический электрод, к которому подходят электроны, – сток. Третий вывод от p-n-перехода называют затвор.

Точное описание процессов в полевом транзисторе представляет определенные трудности. Поэтому, Шокли предложил упрощенную теорию униполярного транзистора в основном объясняющую свойства этого прибора. При изменении входного напряжения (исток-затвор) изменяется обратное напряжение на p-n-переходе, что приводит к изменению толщины запирающего слоя. Соответственно изменяется площадь поперечного сечения n-канала, через который проходит поток основных носителей заряда, т.е. выходной ток. При высоком напряжении затвора запирающий слой становится все толще и площадь поперечного сечения уменьшается до нуля, а сопротивление канала увеличивается до бесконечности и транзистор запирается.

Характеристики

Тип файла
Документ
Размер
469 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7021
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее