sborka (721923), страница 6

Файл №721923 sborka (Задача обработки решеток) 6 страницаsborka (721923) страница 62016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 6)

Пусть центр диска по-прежнему совпадает с центром резона­тора, а ось его симметрии повернута на 90° по отношению к оси резонатора (см. рис. 9.6). Решение начинается с нахождения азимутальных гармоник падающего по отношению к диску поля и соответствующих ему первичных токов.

Падающее поле вблизи диска выражается функциями (9.54) и (9.56), которые с учетом изменившейся системы координат запишем так:

(9.59)

(9.60)

Положим, что основная поляризация поля в резонаторе . Экви­валентные токи в координатах вращения, связанных с диском, тогда имеют вид:

(9.61)

Здесь, как и в (9.58), использованы обозначения § 3.3. Переход от декартовых к координатам вращения дает

(9.62)

Коэффициенты А, В и D зависят от формы поверхности, на которой находится точка наблюдения. На плоском торце ( - радиус диска, - его толщина); на цилиндрической поверхности .

Воспользуемся малостью диэлектрического тела по сравнению с размерами резонатора, т. е. учтем, что или и . Это позволяет представить экспоненты двумя членами ря­да Тейлора

. (9.63)

После этого токи записываются в виде

(9.64)

Для следующего типа колебаний «10 q » выражения для пер­вичных токов имеют тот же вид, но A1=3A, D1=3D, B1=B. Да­лее поля разлагаются в ряд Фурье. Поскольку тело невелико, можно ограничиться небольшим числом гармоник. Используя формулы для коэффициентов ряда Фурье и интегральное пред­ставление функции Бесселя (9.21), получаем выражения для гар­моник падающих токов. При этом в силу симметрии в случае синфазных токов на зеркалах присутствуют только нечетные гар­моники, что соответствует максимуму поля резонатора в области диска:

(9.65)

Здесь

.

Переход к отрицательным индексам происходит так же, как и ранее.

После вычисления первичных токов используется алгоритм ре­шения задачи возбуждения тела вращения, основанный на уравнении (3.85). Результат получается в виде распределения азиму­тальных гармоник плотностей эквивалентных токов на поверх­ности диэлектрика.

Далее по этому распределению нетрудно рассчитать рассеян­ное поле всюду и в том числе на поверхности зеркала. Как и в § 9.4, это поле и определяет элементы матрицы однородной СЛАУ (9.48). Расчет ведется в тех же приближениях с учетом изменив­шейся системы координат. В частности, асимптотическая форму­ла для функции в этих координатах имеет вид

. (9.66)

Существенные затруднения вызывает вычисление интегралов (9.49), определяющих элементы матрицы СЛАУ (9.48).

Интеграл здесь поверхностный, т. е. двойной, и численное ин­тегрирование требует больших затрат времени ЭВМ. Выходом из положения является аналитическое вычисление одного из интег­ралов. Для этого можно воспользоваться тем, что в направлении, перпендикулярном оси (см. рис. 9.7), каждая из азимутальных гармоник рассеянного поля имеет синусоидальную зависимость. Формально удобно вести это интегрирование по декартовой координате в пределах от до . Зависимость поля будет синусоидальной только на окружности с центром, сов­падающим с диском1. Отличие этой окружности от меридиональной линии зеркала учтем только в фазе. Поправочный множитель, как показывает геометрический расчет, имеет вид .

Зависимость поля каждой гармоники от на зеркале может быть представлена только в числах, поэтому интеграл по в пределах - берется численно. Таким путем приходим к интегралу

(9.67)

где — гиперсфероидальные функции, которые берутся в приближении гауссова пучка, т. е. в виде (9.55) и (9.57).

Формула (9.67) учитывает векторный характер поля. Все рас­четы ведутся в предположении, что основная поляризация в ре­зонаторе и, следовательно, . В рассеянном поле при исполь­зовании метода Галеркина надо брать ту же поляризацию. Она в координатах вращения, связанных с диском, представляет собой . Интеграл по , как уже говорилось, можно взять аналитичес­ки. Не останавливаясь на подробностях, их можно найти в [72], заметим, что этот интеграл можно свести к неполной гамма-функ­ции. Для вычисления последней имеются быстро сходящиеся ря­ды. Нахождение одномерного интеграла по численным методом труда не представляет.

Рассмотрим некоторые результаты расчетов. Качественно они такие же, как и в случае шара (§ 9.3). С ростом действительной части диэлектрической проницаемости диска растет смещение частоты (рис. 9.8,а). Мнимая часть , т. е. , на эту величину влияет слабо. Изменение обратной величины к добротности также увеличивается с ростом за счет рассеяния на диске. Мнимая часть проницаемости заметно влияет 'на изме­нение добротности только при , когда омические потери в образце соизмеримы с потерями резонатора за счет рассеяния на диске (рис. 9.8,6).

1 Окружность показана на рис. 9.7 тонкой линией

a)

б)

Рис. 9.8. Сдвиг резонансной частоты и изменение добротности открытого ре­зонатора с диском как функция диска

Рис. 9.9 Изменение добротности открытого резонатора с диском как функция диска

Рис. 9.10. Сравнение параметров резонатора с диэлектрическим шаром и диском

К тому же выводу приходим, рассматривая параметр как функцию для различных значений . Видно, что с увеличением кривая становится все более пологой и извлечение информация об диэлектрического образца становится все более проблема­тичным (рис. 9.9).

Если считать, что 10%-ная доля омических потерь еще раз­личима на фоне потерь на рассеяние, то в области можно измерить порядка , а при только величины .

Таким образом, методом открытого резонатора можно измерять потери только очень плохих диэлектриков. Расчет связи параметров диэлектрика и характеристик резонатора для шара все же проще, чем для диска. Поэтому встает вопрос, нельзя ли установить соответствие между образцами в форме шара и диска. В качестве параметра соответствия естественно взять объем диэлектрического образца. С этой целью были рассчитаны смещения собственной частоты и изменение обратной величины добротнос­ти для шара и диска с одинаковым объемом. Оказалось (рис. 9.10), что эти зависимости, качественно одинаковые, количествен­но различаются заметно. Поэтому для получения приемлемой точности измерений необходимо тарировочные кривые строить на ос­нове адекватной математической модели.

ЗАКЛЮЧЕНИЕ, ПЕРСПЕКТИВЫ

Метод интегральных уравнений в электродинами­ке появился сравнительно недавно и быстро завоевал популяр­ность. Этому способствовал целый ряд его преимуществ: простота метода и, следовательно, его доступность; единство подходов к ре­шению весьма широкого круга задач; удобство реализации в ви­де вычислительных программ алгоритмов, на нем основанных, и, наконец, высокая степень универсальности.

Остановимся на указанных чертах метода несколько подробнее. Единство подходов к большому кругу задач означает, как видно из гл. 2 и 3, что интегральные уравнения, эквивалентные различным граничным задачам электродинамики, составляются по одному и тому же стереотипу. При этом для задач на телах вращения нет необходимости проходить стадию уравнений для произвольных тел. Истокообразные представления (3.8) и (3.9) вместе с формулами для элементов тензорной функции Грина поз­воляют" легко и быстро, примерно так же как из крупных блоков строят дома, составлять необходимые уравнения.

Те же «крупные блоки» в виде подпрограмм для -функции для элементов тензора Грина и решения систем линейных алге­браических уравнений позволяют достаточно быстро и просто компоновать программы для всех сформулированных в книге за­дач и для многих других. Те же подпрограммы дают возможность после численного решения уравнений найти поле в любой точке пространства.

3 МЕТОД СВЧ КОНТРОЛЯ ПАРАМЕТРОВ ПОЛИМЕРОВ

Для контроля технологических параметров полимеров (качества смещения, определение включений, вязкости) находят применение радиоволновые метода СВЧ. Рассмотрим метод, который характеризуется определением объёмной эффективной площади рассеяния ( ЭПР ).

ЭПР это площадь поперечного сечения некоторого фиктивного тела, которое рассеивает электромагнитную в одну, ЭПР существенно зависит от формы м ориентации тела, от его материала ЭПР, разрешаемого объема заполненного частицами ( элементарными отражателями), выражается произведением . Так для реальных полимерных материалов требуется знать распределение частиц во размерам размеры частиц в единице объёма распределены по групп и в 1-й группе содержится частиц с аффективной площадью рассеяния , то удельная объёмная ЭПР

(1)

ЭПР одной сферической частицы, диаметр которой много меньше длины волны, определяется формулой

(2)

Коэффициент , выраженный через комплексный показатель преломления изменяется от для частиц наполнителя.

Практически для большинства объектов полимерных структур

с наполнителем удельную ЭПР можно выразить формулой

(3)

Характеристики

Тип файла
Документ
Размер
4,76 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее