131771 (721240), страница 2
Текст из файла (страница 2)
Генеральная совокупность и выборка. Психологу постоянно приходится иметь дело с этими двумя понятиями.
Генеральная совокупность, или просто совокупность, — это множество достаточно большого объема, все элементы которого обладают какими-то общими признаками.
Так, все подростки-шестиклассники 12 лет (от 11,5 до 12,5) образуют совокупность. Дети того же возраста, но не обучающиеся в школе или же обучающиеся, но не в шестых классах, не подлежат включению в эту совокупность.
В ходе конкретизации проблем своего исследования психологу неизбежно придется обозначить границы изучаемой им совокупности.
Следует ли включать в изучаемую совокупность детей того же возраста, но обучающихся в колледжах, гимназиях, лицеях и других подобных учебных заведениях?
В ответе на этот и другие такие же вопросы может помочь статистика.
В подавляющем большинстве случаев исследователь не в состоянии охватить в изучении всю совокупность. Приходится, хотя это и связано с некоторой утратой информации, взять для изучения лишь часть совокупности, ее и называют выборкой. Задача исследователя заключается в том, чтобы подобрать такую выборку, которая репрезентировала бы, представляла совокупность; другими словами, признаки элементов совокупности должны быть представлены в выборке. Это достигается, прежде всего, использованием случайной выборки из совокупности. Составить такую выборку, в точности повторяющую все разнообразные сочетания признаков, которые имеются в элементах совокупности, вряд ли возможно. Поэтому некоторые потери в информации оказываются неизбежными. Важно, чтобы были сохранены в выборке существенные с точки зрения данного исследования признаки совокупности. Возможны случаи, и для их обнаружения есть статистические методы, когда задачи исследования требуют создания двух выборок одной совокупности; при этом нужно установить, не взяты ли выборки из равных совокупностей. Эти и другие подобные казусы нужно иметь в виду психологу при обработке результатов выборочных исследований.
Следует рассмотреть типы задач, с которыми чаще всего имеет дело психолог. Соответственно приводятся и статистические методы, которые приложимы для обработки психологических материалов, направленных на решение этих задач.
Первый тип задач. Данный тип задач представлен в ситуации, когда психологу нужно дать сжатую и достаточно информативную характеристику психологических особенностей какой-то выборки, например школьников определенного класса. Чтобы подойти к решению этой задачи, необходимо располагать; результатами диагностических испытаний; эти испытания, разумеется, следует заранее спланировать так, чтобы они давали информацию о тех особенностях группы, которые в этом конкретном случае интересуют психолога. Это могут быть особенности умственного развития, психофизиологические особенности, данные об изменении работоспособности и т. д.
Получив все экспериментальные результаты и материалы наблюдений, следует подумать о том, как их подать пользователю в компактном виде, чтобы при этом свести к минимуму потерю информации. В перечне статистических методов, используемых при решении подобных задач, обычно находят свое место и параметрические, и непараметрические методы; о возможностях применения тех и других, как было сказано выше, судят по самому полученному материалу. Об этих статистических методах и их использовании пойдет речь далее.
Второй тип задач. Это, пожалуй, наиболее часто встречающиеся задачи в исследовательской и практической деятельности психолога: сравниваются между собой несколько выборок, чтобы установить, являются ли выборки независимыми или принадлежат одной и той же совокупности. Так, проведя эксперименты в восьмых классах двух различных школ, психолог сравнивает эти выборки между собой.
К этому же типу относятся задачи с определением тесноты связи двух рядов показателей, полученных на одной и той же выборке; в такой обработке чаще всего применяют метод корреляций.
Третий тип задач. Это задачи, в которых обработке подлежат временные ряды, ряды, в которых расположены показатели, меняющиеся во времени; их называют также динамическими рядами. В предшествующих типах задач фактор времени не принимался во внимание, и материал анализировался так, как будто он весь поступил в руки исследователя в одно и то же время. Такое допущение можно оправдать тем, что за тот короткий период времени, который был затрачен на собирание материала, он не претерпел существенных перемен. Но психологу приходится работать и с таким материалом, в котором наибольший интерес представляют как раз его изменения во времени. Допустим, психолог намерен изучить изменение работоспособности школьников в течение учебной четверти. В этом случае информативными будут показатели, по которым можно судить о динамике работоспособности. Берясь за такой материал, психолог должен понимать, что при анализе динамических рядов нет смысла пользоваться средним арифметическим ряда, так как среднее арифметическое замаскирует нужную информацию о динамике.
В основном тексте книги упоминалось о лонгитюдинальном исследовании, т. е. таком, в котором однообразный по содержанию психологический материал по одной выборке собирается в течение длительного времени. Показатели лонгитюда — это также динамические ряды, и при их обработке следует пользоваться методами, предназначенными для таких рядов.
Четвертый тип задач. Это задачи, возникающие перед психологом, занимающимся конструированием диагностических методик, проверкой и обработкой результатов их применения. Отчасти об этих задачах уже говорилось в других главах, но не уделялось внимания специально статистике. Психологическая диагностика, в особенности тестология, имеет целый ряд канонических правил, применение которых должно обеспечивать высокое качество информации, получаемой посредством диагностических методик. Так, методика должна быть надежной, гомогенной, валидной. По упрочившимся в тестологии правилам все эти свойства проверяются статистическими методами.
Выше были перечислены типы задач, с которыми чаще всего встречаются психологи. Теперь мы перейдем к изложению конкретных статистических методов, способствующих успешному решению перечисленных задач. Но прежде следует высказать некоторые соображения о возможностях статистики в проведении психологического исследования.
Назначение статистики состоит в том, чтобы извлечь из этих материалов больше полезной информации. Вместе с тем статистика показывает, что эта информация не случайна и что добытые данные имеют определенную и значимую вероятность.
Статистические методы раскрывают связи между изучаемыми явлениями. Однако необходимо твердо знать, что, как бы ни была высока вероятность таких связей, они не дают права исследователю признать их причинно-следственными отношениями. Статистика, например, утверждает, что существует значимая связь между двигательной скоростью и игрой в теннис. Но отсюда еще не вытекает, будто двигательная скорость и есть причина успешной игры. Нельзя, по крайней мере в некоторых случаях, исключить и того, что сама двигательная скорость явилась следствием успешной игры.
Чтобы подтвердить или отвергнуть существование причинно-следственных отношений, исследователю зачастую приходится продумывать целые серии экспериментов. Если они будут правильно построены и проведены, то статистика поможет извлечь из результатов этих экспериментов информацию, которая необходима исследователю, чтобы либо обосновать и подтвердить свою гипотезу, либо признать ее недоказанной.
Статистические методы, примеры их применения для принятия решения
Первый тип задач
Допустим, что школьному психологу нужно представить краткую информацию о развитии психомоторных функций учащихся шестых классов. В этих классах обучается 50 учеников. В процессе выполнения своей программы психолог провел диагностическое изучение двигательной скорости, применив ранее описанную методику (описание дано на первой странице данного раздела).
Для реализации своей программы психологу надлежало получить количественные характеристики, свидетельствующие о состоянии изучаемой функции — ее центральной тенденции, величины, показывающей размах колебания, в пределах которого находятся данные отдельных учеников, и то, как распределяются эти данные. Какими методами вести обработку, зависит от того, в какой статистической шкале измерены значения исследуемого признака. Визуальное ознакомление с полученными данными показывает, что возможно вычисление среднего арифметического, выражающего центральную тенденцию, и среднеквадратического отклонения, показывающего размах и особенности варьирования экспериментальных результатов.
Нельзя ограничиться вычислением только среднего арифметического, так как оно не дает полных сведений об изучаемой выборке.
Вот пример.
В одном купе вагона поместилась бабушка 60 лет с четырьмя внуками: один — 4 лет, двое — по 5 лет и один — 6 лет. Среднее арифметическое возраста всех пассажиров этого купе 80/5= 16.
В другом купе расположилась компания молодежи: двое — 15-летних, один — 16-летний и двое — 17-летних. Средний возраст пассажиров этого купе также равен 80/5= 16. Таким образом, по средним арифметическим пассажиры этих купе как бы и не отличаются. Но если обратиться к особенностям варьирования, то сразу можно установить, что в одном купе возраст пассажиров варьируется в пределах 56 единиц, а во втором — в пределах 2.
Для вычисления среднего арифметического применяется формула:
" х = ∑ х / n
а для среднеквадратического отклонения формула:
σ = √∑ (х - " х )2 / n
В этих формулах "х означает среднее арифметическое, х — каждую величину изучаемого ряда, ∑ означает сумму; σ означает среднеквадратическое отклонение; буквой n обозначают число членов изучаемого ряда.
Ниже представлен весь ход его обработки.
В опытах участвовало 50 испытуемых. Каждый из них выполнил 25 проб, по 1 мин каждая. Вычислено среднее для каждого испытуемого. Полученный ряд упорядочен, и все индивидуальные результаты представлены в последовательности от меньшего к большему.
85-93-93-99-101-105-109-110-111-115-115-116-116-117-117-117-118-119-121-121-122-124-124-124-124-125-125-125-127-127-127-127-127-128-130-131-132-132-133-134-134-135-138-138-140-143-144-146-150-158.
Для удобства дальнейшей обработки эти первичные данные соединены в группы. Благодаря группировке отчетливее выступает присущее данному ряду распределение величин и их численностей. Отчасти упрощается и вычисление среднего арифметического и среднеквадратического отклонения. Этим компенсируется количественное искажение информации, неизбежное при вычислениях на сгруппированных данных.
При выборе группового интервала следует принять во внимание такие соображения. Если ряд не очень велик, например содержит до 100 элементов, то и число групп не должно быть очень велико, например порядка 8-12. Желательно, чтобы при группировании начальная величина — при соблюдении последовательности от меньшей величины к большей — была меньше самой меньшей величины ряда, а самая большая — больше самой большой величины изучаемого ряда. Если ряд, как в данном случае, начинается с 85, группирование нужно начать с меньшей величины, а поскольку ряд завершается числом 158, то и группирование должно завершаться большей величиной. В ряду, который нами изучается, с учетом высказанных соображений можно выбрать групповой интервал в 9 единиц и произвести разбивку ряда на группы, начав с 83. Тогда последняя группа будет завершаться величиной, превышающей значение последней величины ряда (т. е. 159). Число групп будет равно 9. В табл. 1 представлены группы в их последовательности и все другие величины для вычисления среднего арифметического и среднеквадратического отклонения. Таблица состоит из 8 столбцов.
1-й столбец — группы, полученные после разбиения изучаемого ряда.
2-й столбец — средние значения интервалов по каждой группе.
3-й столбец показывает результаты «ручной» разноски величин ряда или иксов (каждая величина занесена в соответствующую ее значению группу в виде черточки).
4-й столбец — итог подсчета результатов разноски.
5-й столбец — произведения величин 2-го столбца на величины 4-го столбца по строчкам. Итоги 4-го и 5-го столбцов дают суммы, необходимые для вычисления среднего арифметического.
Таблица 1
Вычисление среднего арифметического и среднеквадратического
отклонения
| Границы интервалов | Средние интервалов х | Результат разноски | Итоги разноски | f *х | х – "х | (х - " х )2 | f *(х - "х)2 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 83-91 | 87 | I | 1 | 87 | -36 | 1296 | 1296 |
| 92-100 | 96 | 3 | 288 | -27 | 729 | 2187 | |
| 101-109 | 105 | 3 | 315 | -18 | 324 | 972 | |
| 110-118 | 114 | 10 | 1140 | -9 | 81 | 810 | |
| 119-127 | 123 | 16 | 1968 | 0 | 0 | 0 | |
| 128-136 | 132 | 9 | 1188 | 9 | 81 | 729 | |
| 137-145 | 141 | 5 | 705 | 18 | 324 | 1620 | |
| 146-154 | 150 | 2 | 300 | 27 | 729 | 1458 | |
| 155-163 | 159 | I | 1 | 159 | 36 | 1296 | 1296 |
n = 50 ; ∑f * х = 6150 ; ∑f *(х - " х )2 = 10368















