128681 (719975), страница 3

Файл №719975 128681 (Теория сравнений) 3 страница128681 (719975) страница 32016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 3)

2.4. Как определить, сравнимы ли два данных числа по заданному модулю? Попробуйте составить алгоритм узнавания сравнимых по данному модулю целых чисел.

Ответ : Чтобы проверить сравнимость двух целых чисел по данному модулю, надо:

  1. Найти разность этих чисел;

  2. Установить, делится ли полученная разность на данный модуль;

  3. Сделать вывод.

2.5. Верно. А теперь попробуйте привести примеры сравнимых по модулю 5 чисел.

2.6. Проверьте, сравнимы ли числа :

  1. а=56, в=40, m=8 ;

  2. а=48, в=13, m= -2 ;

  3. а=4.5, в=6, m=3 ;

  4. а=17, в=28, m=11.

2.7. Проверьте, верно ли сравнение:

  1. 6≡0(mod 2);

  2. 4≡53(mod 7);

  3. 59≡17(mod 2).

2.8. Как вы думаете, какими свойствами обладает отношение сравнения?

Итак, запишите:

  1. Всякое число сравнимо с самим собой, т.е.

а≡а(mod m);

  1. Если a≡b(mod m), то b≡a(mod m) ;

  2. Если a≡b(mod m) и b≡c(mod m) , то a≡c(mod m);

  3. Обе части сравнения можно умножать на любое целое число, при этом сравнение не изменится.

  4. Сравнения можно почленно складывать, вычитать, перемножать.

  5. Обе части сравнения можно делить на одно и то же число, отличное от нуля.

  6. Любое слагаемое левой и правой части сравнения можно перенести с противоположным знаком в другую часть.

  7. Обе части сравнения и модуль можно делить на одно и то же ненулевое число.

2.9. Все выше перечисленные свойства доказываются с помощью определения сравнения по данному модулю. Давайте докажем эти свойства.(Ученик у доски доказывает одно из свойств, учащиеся и учитель ему в этом помогают.)

Ответ : Согласно определению, два числа сравнимы по данному модулю, если их разность делится на этот модуль. Докажем свойство №1:

Т.к. разность (а – а ) =0 делится на любое число m, то a≡a(mod m).

Аналогично доказываются все оставшиеся свойства сравнений по данному модулю.

2.10.Произнесите теперь еще раз выше перечисленные свойства сравнений с целью усвоения их на 1 уу.

III. Анализ результатов.

3.1. Итак, какую цель мы сегодня перед собой ставили?

Ученики формулируют цель.

      1. Как вы считаете, мы ее достигли и почему?

      2. Спасибо за урок!

Модель № 2.

Тема урока: Способы проверки арифметических действий с помощью теории сравнений.

ОЦ: Через организацию урока обеспечить усвоение способов проверки арифметических действий посредством теории сравнений на 1,2 уу.

ВЦ: Воспитывать самостоятельность.

РЦ: Развивать память, мышление.

Содержание урока.

I. Постановка целей и сообщение темы урока.

1.1. Сегодня на уроке вы познакомитесь с очень интересной областью применения теории сравнений. Теоретический материал данной темы вам приподнесет Иванов П., который выбрал эту тему для самостоятельного изучения, разобрался с ее содержанием и сегодня попытается доходчиво донести его до вас. Ваша задача – внимательно слушать отвечающегося, уважать его труд, быть активными в работе на уроке. Не забывайте также, что мы с вами договорились все занятия кружка посвятить воспитанию в себе самостоятельности, поэтому будте целеустремленны и ответственны за свою деятельность на сегодняшнем уроке.

Далее учитель передает вдение урока ученику, приготовившему доклад по данной теме.

Примечание: Каждый ученик (по желанию) заранее выбирает тему для самостоятельного изучения. Учитель помогает учащемуся в изучении выбранной темы тем, что предоставляет ему источник , в котором ученик сможет найти нужную информацию по данной теме, знакомит ученика с приемами работы над текстом учебника (или любого другого источника информации).

При такой организации урока учащимся предоставляется возможность встать на путь исследований, пусть простых , но тем не менее их ум направлен на поиск, раздумия, открытия. Тем самым , на таких уроках заложится фундамент творческих способностей учащихся, через самостоятельную работу учеников над новой темой произойдет развитие у учащихся таких личностных качеств , как настойчивость, целеустремленность, самостоятельность, ответственность в выполнении поручений (ведь от того, как ученик самостоятельно поработает над темой , зависит понимание или непонимание данной темы классом).

II. Ход урока.

2.1. Прежде чем перейти к изучению нового материала, вспомним:

  1. В каком случае два числа называются сравнимыми по данному модулю?

  2. Как формулируются основные свойства сравнений?

  3. Как формулируются признаки делимости целых чисел на 9 и на 11?

2.2. А теперь перейдем к изучению нового материала.

Ученик делает доклад по данной теме, отвечает на вопросы одноклассников .

Содержание доклада ученика :

Теория сравнений дает следующий способ проверки арифметических действий.

Выбираем некоторый модуль т и заменяем большие числа а,в,с,…, над которыми нам надо производить действия (сложение, умножение, вычитание, возведение в степень), небольшими числами а’ , в’ , с’ ,…, сравнимыми с ними по модулю т. Произведя действия над а, в, с,…, мы такие же действия производим над а’ , в’ , c’ ,…. Если действия произведены верно, то результаты этих действий должны быть сравнимы по модулю т.

Действительно, согласно свойствам сравнений,

если

a≡a’(mod m) , b≡b’(mod m),... ,

то

a+b+...≡a’+b’+...(mod m),

a•b•... ≡a’•b’•... (mod m),

an≡bn(mod m).

Применение этого способа имеет смысл только в том случае, когда нахождение таких чисел а’ ,b’ , c’ , … осуществляется легко и не требует большого времени. Для этого обычно в качестве модуля выбмрают m=9 и т=11, так как признаки делимости на эти числа наиболее просты в применении. . Сформулируем способы проверки арифметических действий “с помощью девятки” и “с помощью одиннадцати”.

По признаку делимости на 9: каждое число, записанное в десятичной системе счисления, сравнимо с суммой его цифр по модулю 9. Исходя из этого, способ формулируется следующим образом:

Способ проверки с помощью девятки.

Для каждого числа вычисляется остаток от деления на 9 суммы цифр. Производя действиянад числами, производят такие же действия над этими остатками. Результат рассматриваемых действий над этими остатками должен отличаться от суммы цифр искомого результата на число, кратное девяти.

По модулю 11 каждое число, записанное в десятичной системе счисления, будет сравнимо с суммой цифр, взятых справа налево попеременно со знаками “плюс” и “минус”(согласно признаку делимости на 11). Следовательно, следующий способ формулируется так:

Способ проверки с помощью одиннадцати.

Для каждого числа вычисляется остаток от деления на 11 суммы цифр, взятых попеременно справа налево со знаками “плюс” и “минус”. Результат рассматриваемых действий над этими остатками должен отличаться от суммы взятых попеременно со знаками “плюс” и “минус” цифр искомого результата на число, кратное 11.

2.2. Итак, вы прослушали новый материал, записали необходимые теоретические факты. Теперь наша с вами задача усвоить данный материал на 1,2 уу.

2.3.Сформулируйте способ проверки арифметических действий с помощью девятки.

2.4. Попробуйте составить алгоритм применения данного способа к решению задач.

Ответ : Чтобы проверить арифметические действия над целыми числами с помощью девятки, надо:

  1. Для каждого данного числа найти сумму его цифр;

  2. Для каждого из полученных результатов суммирования найти остатки от деления их на 9;

  3. Произвести над остатками те же действия, что и над данными числами;

  4. Сравнить полученные результаты;

  5. Сделать вывод.

2.5. Применим данный алгоритм к следующей задаче:

Проверить с помощью модуля 9, верен ли результат умножения

73416 · 8539 = 626899224

Ответ : 1) находим суммы цифр первого и второго сомножителей, а также сумму цифр результата умножения.

7+3+4+1+6=21;

8+5+3+9=25;

6+2+6+8+9+9+2+2+4=48.

2) находим остатки от деления полученных чисел на 9:

    1. ≡ 3(mod 9);

  1. ≡ 7(mod 9).

3) производим над остатками те же действия, что и над данными числами:

3 ·7 =21

4) сравниваем полученный результат с третьим остатком

21 ≡48 (mod 9)

5) таким образом, умножение произведено верно.

2.6.Следующий пример я предлагаю вам решить самостоятельно.

После того, как первый способ проверки арифметических действий будет усвоен, аналогично организовывается работа по усвоению способа проверки арифметических действий с помощью одиннадцати.

Затем ученикам предлагается решить следующую задачу:

Проверить , верно ли , что

5839131309


67377 = 85847

Данная задача содержит провокацию на ошибку, т.к. при проверке действий с помощью девятки результат получаем верный, а при использовании способа проверки с помощью одиннадцати, получаем неверный результат.

После решения данной задачи ученикам предлагается сделать вывод о том, что при сложных вычислениях имеет смысл проводить две проверки: одну с помощью модуля 9, а другую с помощью модуля 11. В этом случае ошибка не будет замечена только если она кратна 99, что бывает очень редко.

III.Анализ результатов.

3.1.Итак, наше занятие подошло к концу, давайте подведем его итоги. Как вы думаете, поставленная нами в начале урока цель реализована или нет и почему вы так считаете?

3.2. Спасибо за урок!

Модель № 3. (Основные моменты организации урока)

Тема урока: Решение задач на применение теории сравнений.

ОЦ: Обеспечить обобщение знаний по теме “Теория сравнений целых чисел” на 1,2 уу.

ВЦ: Воспитывать самостоятельность учащихся

РЦ: Посредством материала темы развивать мышление учащихся.

Содержание урока.

I. Постановка целей и сообщение темы урока.

1.1. Как было решено на прошлом занятии, сегодня мы с вами будем решать задачи на применение теории сравнений. Давайте сформулируем цели данного занятия и составим его план .

Ответ учеников:

Цель занятия : Научиться применять теорию сравнений к решению различных математических задач, при этом быть активными, целеустремленными, воспитывать в себе самостоятельность.

План занятия : 1) Актуализировать необходимую теорию.

2) Решить несколько задач, при этом составить алгоритмы решения каждой из них и обобщить эти алгоритмы на целый класс подобных задач.

3) Подвести итог занятия, проанализировать достижение или недостижение поставленных целей.

1.2. Давайте выясним, какие знания нам необходимо актуализировать для того , чтобы переходить к непосредственному решению задач?

Ответ учеников:

1) Определение сравнения двух чисел по данному модулю

2) Основные свойства сравнения

3) Области применения теории сравнений целых чисел

II. Ход урока.

Ученики, ответственные за данный урок предлагают классу различные задачи, решаемые посредством теории сравнений. Учащиеся самостоятельно проводят анализ условия задачи, предлагают способы ее решения, выбирают из предложенных наиболее рациональный , делают выводы, составляют алгоритмы решения задач данного типа.

Роль учителя на данном этапе урока состоит в руководстве ходом урока, направлении мыслей учащихся в нужном направлении.

III. Анализ результатов.

Учащиеся самостоятельно анализируют результаты урока, делают выводы по развитию своей самостоятельности, планируют свою деятельность на следующем занятии(выбирают тему и форму проведения урока).

***

На каждом из описанных моделей уроков ученики учатся производить свободный осознанный выбор, за который в дальнейшем им прийдется в той или иной степени нести ответственность, учатся планировать и анализировать свою деятельность . Учитель во всех этих случаях является организатором , наставником и помошником учеников.

2.3. Организация взаимодействия учителя и учащихся на субъектно – субъектных отношениях, обеспечивающих воспитание самостоятельности учащихся.

В 7”А” классе средней школы № 63 г.Хабаровска были проведены занятия по разработанным моделям уроков, представленным в пункте 2.2. данной работы.

В ходе данного эксперимента учащимся была предоставлена возможность проявить свои творческие способности, показать уровень математических знаний , а также применить имеющиеся знания в нестандартных ситуациях на занятиях математического кружка.

В результате проведения данного эксперимента у учащихся были развиты следующие способности и качества:

1. Умение самостоятельно ставить цель , планировать свою деятельность по ее достижению и анализировать полученные результаты.

2. Способность свободно и осознанно делать выбор.

Характеристики

Тип файла
Документ
Размер
182,36 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6958
Авторов
на СтудИзбе
264
Средний доход
с одного платного файла
Обучение Подробнее