vibivaemost (718422), страница 7
Текст из файла (страница 7)
Растворы в уайт-спирите добавок типа битума имеют меньшее поверхностное натяжение, чем водный раствор силиката натрия. Если поэтому их вводить в смеси после жидкого стекла, то они не будут достаточно эффективны. Если же их ввести в смесь до жидкого стекла, то при перемешивании вязкость последнего очень быстро возрастает, что будет препятствовать вытеснению раствора битума на поверхность водного раствора силиката натрия. Благодаря этому положительное влияние добавки битума сохранится, хотя оно окажется менее эффективным, чем при применении порошкообразных органических добавок (рис. 18, а).
Наименьший эффект будет получен при использовании водных растворов, например, мочевины (рис. 18, б).
1.6.Влияние хрупкой усадки
Результаты опытов (рис. 19) на отливках при разном отношении толщины стенок отливки к радиусу стержней показали, что второй максимум образуется примерно при 800° C, а те же смеси с добавкой 3% глины не достигли второго максимума даже при 1150° C(
). Аналогичные результаты были получены при введении в смеси химически чистого Al
O
,MgO, мела и боксита[10,11].
Рис.19.Работа, затраченная на выбивку из отливок стержней, продутых CO
и изготовлен-ных из смесей:
1 — кварцевого песка с 4% жидкого стекла;
2—кварцевого песка с 3% глины и 4% жидкого стекла.
Сопоставляя результаты испытаний образцов, не подвергавшихся действию жидкого металла, и образцов, заливавшихся металлом, можно заметить, что работа, затрачиваемая на выбивку стержней при температуре их нагрева, соответствующей второму максимуму или близкой к ней, в последнем случае в несколько раз выше, чем в первом. Основная причина этого заключается в том, что стержни, установленные в литейной форме, подвергаются не только нагреву, но и действию сил сжатия, проявляющихся при усадке отливок в процессе их остывания.
Чем тоньше зерновое строение наполнителя или специальной добавки, тем выше величина работы, затрачиваемой на выбивку стержней. С другой стороны, для более активного химического взаимодействия веществ их целесообразно применять в тонкоразмолотом виде.
Таким образом, специальные добавки, вводимые в смесь в тонкоизмельченном состоянии, обеспечивают значительное расширение температурного интервала первого максимума, но в зажимаемых местах стержней, прогревающихся до температуры второго максимума или близких к ней, величина работы, затрачиваемой на выбивку, остается значительной. Для снижения работы выбивки необходимо принимать дополнительные меры, к которым относится, например, обеспечение «хрупкой» усадки стержней при их охлаждении. Это может быть достигнуто принудительным охлаждением стержней воздухом или водой, ускоренной выбивкой отливок из форм, применением оболочковых стержней, двухслойных стержней с облегченной сердцевиной и др.
1.7.Влияние ускоренного охлаждения
Эффективность ускоренного охлаждения стержней видна из опытов, проведенных со смесью, содержавшей кварцевый песок, 5% жидкого стекла и 1 % NaOH[10].
Опыты (рис. 20) показали, что путем увеличения скорости охлаждения образцов,
Рис. 20. Работа, затраченная на
Выбивку образцов, нагретых до
800° C и затем охлажденных с
разной скоростью:
1—высушенных при 200° C;
предварительно нагретых до температуры образования второго максимума (800° С), можно примерно в 3 раза сократить величину А. Аналогичные результаты были получены при увеличении скорости охлаждения стержней, залитых металлом.
Здесь также трудоемкость выбивки стержней из отливок при применении методов ускоренного охлаждения сократилась примерно в 3 раза (рис. 21). Это подтверждает представления о когезионном типе разрушения смесей и влиянии на прочность стержней напряжений, возникающих в пленках при их охлаждении.
Рис. 21. Работа, затраченная на выбивку стержней, продутых CO
, из отливок при различной скорости их охлаждения:
1-остывание вместе с формой; 2 — выбивка через 1ч; 3—выбивка через 15 мин; 4—продувка воздухом после заливки.
1.8.Влияние количества жидкого стекла
Из расчетов прочности смесей, известно, что при данном наполнителе и данном связующем материале в случае когезионного типа разрушения прочность смеси
Рис. 22. Работа, затраченная на
выбивку стержней, высушенных при 200°C из стальных отливок:
1 — смесь с 8% жидкого стекла;
2— то же с 6%; 3 — то же с 4%.
будет непосредственно зависеть от количества введенного в нее связующего материала. Следовательно, чем больше жидкого стекла будет введено в смесь, тем труднее окажется выбивка стержней из отливок(рис.22).
Поэтому одним из действенных средств облегчения выбивки является максимальное (допустимое по другим технологическим показателям) снижение количества жидкого стекла в смеси.
1.9.Влияние модуля жидкого стекла
Изменение модуля стекла в пределах от 2.0 до 3.0 при незначительном изменении содержания Na
O в пределах 11,8—12.1 до 14,2—14,6% (ГОСТ 8264—56) мало влияет на условия выбивки стержней[11].
Существенное повышение модуля до 3,5 благоприятно сказывается на улучшении выбивки, но одновременно заметно ухудшаются технологические свойства смесей — пластичность, длительность сохранения физико-механических свойств, что значительно затрудняет использование смесей в производстве[6]. Поэтому более целесообразной является работа на жидком стекле низкого модуля (в пределах, предусмотренных ГОСТ 8264—56) с одновременным принятием мер для облегчения выбивки стержней в соответствии с приведенными выше положениями.
2.Улучшение выбиваемости жидкостекольных наливных самотвердеющих смесей
2.1.Изменение прочности НСС в зависимости
от температуры нагрева
Одним из недостатков жидкостекольных НСС, тормозящих их более широкое применение в литейных цехах, является плохая выбиваемость из отливок. Причина последней – образование при 600-800ºC легкоплавких силикатов, которые при охлаждении приводят к спеканию смеси и резкому повышению её прочности.
Для улучшения выбиваемости в смеси рекомендуют вводить различные добавки, однако надёжных критериев выбора этих добавок практически нет. Органические добавки чаще всего рекомендуют для улучшения выбиваемости смесей из чугунных отливок, а неорганических из стальных.
Для улучшения выбиваемости жидкостекольных НСС пытались вводить в них те же вещества, что и для улучшения выбиваемости обычных пластичных жидкостекольных смесей (уголь, графит, кокс, мазут, опилки, глину, мел, пульвербакелит и др.). Однако практика показала, что многие из этих веществ снижают текучесть, устойчивость пены и прочность НСС, а также ухудшают другие свойства НСС.
Таблица 4
Составы формовочных смесей, применяемых для исследования выбиваемости
Смесь | Состав, мас. ч. | |||||
| Кварцевый песок | Феррохромо-вый шлак | Жидкое стекло | Бентонит | Вода | ДС - РАС | |
Пластичная жидкостекольнаяПластичная самотвердеющаяНССПесчано-глинистая | 10095 95 100 | ―5 5 ― | 66 6 ― | ――― 10 | 22 2 8 | ―― 0,07 ― |
В связи с этим изучена прочность смесей после нагревания и охлаждения[7]. Их состав приведён в табл. 4. Исследования показали, что при заливке чугуном технологических проб максимальная температура прогрева НСС в центре образца, т. е. на глубине 25 мм равна 800°C, а при заливке сталью – 1200°C. Поэтому добавки, снижающие прочность НСС после нагрева до 800°C, считались эффективными для чугунного литья, а после прогрева до 1200°C – для стального.
Выбиваемость НСС и пластичной самотвердеющей смеси (см. табл. 4), вследствие наличия в них шлака, значительно лучше, чем обычной жидкостекольной. Несколько лучшая выбиваемость НСС по сравнению с пластичными самотвердеющими смесями обусловлена большей пористостью НСС. Однако выбиваемость ее, особенно при нагреве свыше 700°C, хуже, чем у песчано-глинистых смесей.
Рис.23.Влияние температуры прогрева на прочность при сжатии различных смесей:
1-самотвердеющей; 2-обычной жидкост-
кольной; 3-НСС; 4-песчано-глинистой.
Кривая прочности обычной жидкостекольной смеси (см. рис. 23, кривая 2) имеет два максимума и два минимума. Такие же данные получены исследователями ЦНИИТМаша. Кривые прочности пластичной жидкостекольной самотвердеющей смеси (кривая 1) и НСС (кривая 3) имеют три характерных участка: резкое снижение прочности при нагреве до 200°C, небольшое изменение при 200–600°C; значительное повышение при 600–1000°C и еще более высокое –при температуре выше 1000° С.Снижение прочности смесей при нагреве до 200°C объясняется испарением воды гелем, а также различными коэффициентами термического расширения кварцевого песка и геля кремневой кислоты. В табл. 5 приведены результаты изменений объема жидкостекольно-шлаковой композиции и НСС при нагреве их до 600° С.
Таблица 5
Изменение объема композиции и НСС в зависимости от температуры нагрева
| Смесь | Расширение (+) и усадка (–). % при температуре, °С | |||||
| 100 | 200 | 300 | 400 | 500 | 600 | |
| Жидкостекольно-шлаковая композиция НСС | +0,08 +0,08 | –4,40 +0,20 | –4,60 +0,40 | –4,50 + 0,75 | –4,40 + 1,05 | –4,20 + 1.55 |
В результате нагрева в пленке композиции, скрепляющей зерна наполнителя, возникают внутренние напряжения, приводящие к образованию трещин и частичному отрыву пленки композиции от зерна песка. Поэтому сушка стержней или форм из НСС, выдержанных после изготовления более 2 ч, уменьшает их прочность. Особенно сильно снижается прочность, если стержни и формы из НСС выдержаны до сушки сутки и более.
При прогреве НСС до 700–720°C размягчение жидкостекольно-шлаковой композиции не наблюдается, т. е. она находится еще в твердом состоянии. После охлаждения прочность смеси существенно не изменяется и выбиваемость ее вполне удовлетворительна.
Как показали исследования А. П. Семика, в интервале температур 720–1060°С жидкостекольно-шлаковая композиция плавится. Образующаяся жидкая фаза взаимодействует с зернами песка и приводит к спеканию смеси при охлаждении, в результате чего прочность НСС возрастает, а выбиваемость ухудшается. Вязкость композиции при 720—1060°C превышает 200 Па • с, поэтому проникающая способность ее в поры смеси небольшая. При нагреве смеси выше 1060°C вязкость ее вследствие расплавления композиции снижается и при 1100°C составляет 8 Па • с. Благодаря этому резко возрастает проникающая способность композиции в поры между наполнителем, вследствие чего (после охлаждения) прочность НСС значительно увеличивается, а выбиваемость резко ухудшается.















