vibivaemost (718422), страница 4
Текст из файла (страница 4)
гретых до 200º C и до 400º C.
Снижение величины A и образование первого минимума объясняется также полной потерей влаги гелем кремневой кислоты и дисиликатом натрия в интервале температур примерно до 350–400° С.Эти данные подтверждаются термограммами высушенных при: 200° C и продутых углекислым газом смесей, содержащих 6% жидкого стекла.
Здесь, однако, имеется в виду влияние не собственно потери влаги, а воздействия этого процесса на возникновение в пленке, связывающей зерна кварца, напряжении, приводящих к образованию в ней трещин, резко снижающих общую прочность смеси.
Наконец, следует учесть, что напряжения в пленках будут тем выше, чем больше будет перепад между температурой нагрева и температурой последующего охлаждения. Влияние этих факторов на условия выбивки стержней и подтверждение превалирующего значения напряжений, возникающих в пленках и приводящих к падению величины A, находим экспериментально. Полученные данные (рис. 5) ясно показывают, что при повторном нагреве и охлаждении прочность образцов резко падает.
Очевидно, что стекловидная пленка, содержащая в основном гидратированный дисиликат натрия, будет значительно более хрупкой, чем пленка, состоящая в основном из геля кремневой кислоты. Последняя, особенно в начальных условиях, будет обладать эластичностью и способностью частично релаксировать возникающие напряжения. Поэтому прочность предварительно высушенных образцов при повторном нагреве и охлаждении падает гораздо более резко, чем у образцов, предварительно продутых углекислым газом.
Таким образом, в случае высушенных и в случае продутых CO
образцов при их нагреве до 400–600° C и последующем охлаждении в результате возникающих напряжений, приводящих к образованию в пленках трещин, работа, затрачиваемая на выбивку, оказывается минимальной.
Переходя к рассмотрению одного из главных вопросов – причин образования второго максимума, прежде всего следует отметить чрезвычайно быстрое увеличение работы, затрачиваемой на выбивку образцов, предварительно нагретых до 800° С. Столь резкое возрастание прочности при нагреве образцов до 800° С свидетельствует о том, что примерно при этой температуре происходит коренное изменение условий склеивания кварцевых зёрен наполнителя.
Причина образования второго максимума становится очевидной из рассмотрения двойной диаграммы состояния Na
O – SiO
(рис.6)
При нагреве жидкого стекла, обычно применяемых модулей, жидкая фаза начинает появляться при температуре 795° C, а при нагреве до 850° C (для модуля, равного 2,5) образуется полностью жидкий расплав.
Образовавшаяся жидкая фаза силикатного расплава обволакивает зерна кварцевого песка, «залечивает» появившиеся ранее трещины и при последующем охлаждении сообщает смеси высокую прочность, что приводит к значительному увеличению работы, затрачиваемой на выбивку смесей. Этот процесс происходит как в высушенных, так и продутых CO
образцах. Однако, если в высушенных смесях происходит простое расплавление уже ранее образовавшегося силиката натрия, то в смесях продутых CO
образуется расплав из самостоятельно существующих компонентов — главным образом NaHCO
и SiO
, получившихся в результате разложения жидкого стекла при продувании смеси углекислым газом. Это, по-видимому, является причиной меньшей величины второго максимума в образцах, продутых CO
, так как условия образования расплава из отдельных составляющих в тонкой пленке связующего не могут считаться благоприятными. Подтверждением такого предположения являются опыты (рис. 7), проведенные при заливке стержней сталью 30Л. Они подтвердили общую
Рис. 6. Диаграмма состояния системы Na
O – SiO
.
з
акономерность — ярко выраженный максимум работы, затраченной на выбивку стержней, прогретых до температуры примерно 800°С.
Рис. 7.Работа, затраченная на выбивку из отливок стержней:
1—высушенных при 200° C;
Вследствие значительного воздействия на стержень тепла залитого металла, малой теплопроводности смеси и очень медленного охлаждения стержней процессы образования жидкой фазы в пленках связующего материала в данном случае протекают более полно, чем при испытаниях образцов. Поэтому в смесях, продутых COТаким образом, при нагреве смесей до 800°C образуется жидкий расплав, который энергично взаимодействует с кварцевым песком, растворяя последний, в результате чего четко выраженная граница раздела пленки и зерна стирается и образуется сплошной монолит, обладающий большой прочностью. В этих условиях появляется «второй максимум», резко затрудняющий выбивку стержней из отливок.
Рассмотрим причины снижения величины A при нагреве смесей до более высоких температур и условия образования «второго минимума».
При нагреве смесей до температур, превышающих 800° C, взаимодействие силикатного расплава с кремнеземом песка усиливается. Как известно, скорость диффузии возрастает по мере повышения температуры и уменьшения вязкости среды. Поэтому при высоких температурах диффузия SiO
от поверхности растворения в расплав значительно возрастает и в целом процесс растворения кремнезема в силикатном расплаве ускоряется. В результате растворения содержание SiO
в расплаве непрерывно увеличивается вплоть до предела растворимости при данной температуре согласно диаграмме состояния Na
O–SiO
. После достижения предела растворимости этот процесс прекращается.
При охлаждении образца из образовавшегося расплава начинают выпадать избыточные кристаллы сначала тридимита, а при температурах ниже 870° C — кварца. Выпавшие твердые кристаллы в затвердевшем расплаве играют роль инородных включений — надрезов, нарушающих сплошность пленок и концентрирующих напряжения, возникающие при охлаждении образца до комнатной температуры.
Наконец, следует учесть, что чем энергичнее идет процесс растворения SiO
в расплаве, тем меньше становится относительное содержание в нем Na
O.
Эти факторы являются основной причиной уменьшения работы, затрачиваемой на выбивку образцов при их предварительном нагреве до температур, превышающих 800° С. Естественно, что чем выше температура нагрева расплава, тем быстрее происходит растворение кремнезема и тем больше растворимость в расплаве. Следовательно, при охлаждении с более высоких температур расплав будет содержать относительно большее количество твердых инородных включений и сплошность силикатной пленки будет в большей степени нарушена, что будет приводить к дальнейшему уменьшению величины А.
Таким образом, после полного охлаждения пленка, склеившая зерна кварцевого песка, будет иметь не первоначальный состав, соответствующий, например, точке a на диаграмме состояния (рис. 6), а состав, в зависимости от температуры нагрева соответствующий, например, точкам б, в или г. С другой стороны, если образцы, один раз нагретые до 1200° C (точка б), вновь нагревать до 800, 1000 и 1200° C, то состав пленки останется неизменным. Следовательно, работа, затрачиваемая на выбивку вторично нагреваемых образцов, будет примерно одинаковой при всех температурах вплоть до 1200° C. Однако величина A должна быть ниже, чем при первом нагреве до 1200° C, так как при вторичных нагреве и охлаждении увеличиваются напряжения за счет модифицированных изменений кварца и возникающих термических напряжений. Подтверждение находим в опытах, приведенных на рис. 8.
Справедливость последней гипотезы подтверждается также опытами, при которых в качестве наполнителя вместо кварцевого песка был взят цирконовый. В этом случае не только не было обнаружено уменьшения прочности после д
остижения температуры второго максимума, но, наоборот, при нагреве до более высоких температур (1400° С) прочность непрерывно возрастала.
Рис. 8. Работа, затраченная на
выбивку образцов из
смеси на жидком стекле:
1 — предварительно высушенных
при 200° C;
2 — предварительно прокаленных при 120° С.
Одним из главных вопросов, имеющих основное значение для практического улучшения выбиваемости смесей, является максимальное расширение интервала первого минимума работы, затрачиваемой на выбивку стержней.
Выбором более сложных, например тройных систем с определенным соотношением компонентов, можно получить необходимую заданную температуру образования второго максимума.
Обратимся к диаграмме состояния системы Na
O—Al
O
—SiO
(рис. 9). Расчет по соответствующей изотерме диаграммы состояния (рис. 9) показывает, что для получения второго максимума при 1400° C в смесь, содержащую 5% жидкого стекла, модуля 2,7 (SiO
—31,6%; Na
O—12.0%), необходимо добавить 0,97% Al
O
.
Соответствующие опыты, проведенные с введением в смесь, содержащую 5% жидкого стекла, дополнительно 3% химически чистого Al
O
, количество которого по срав-нению с расчетным было значительно увеличено для более четкого выявления закономерности и ввиду возможного неполного усвоения















