126257 (717740), страница 2
Текст из файла (страница 2)
Максимальная скорость полосы, м/мин: во входной части 780, в травильной 360, а в выходной 500. Заправочная скорость 60 м/мин. При травлении 25-т рулона полосы сечением 2,3 х 1350 мм средняя производительность травильного агрегата 360 т/ч.
Непрерывно-травильный агрегат № 2 по составу и характеристике оборудования выполнен аналогично непрерывно-травильному агрегату № 1. В состав его дополнительно включен участок пассивации длиной 5,0 м для нанесения раствора, предохраняющего металл от коррозии.
Состав пассивирующего раствора, кг/м3: 42 соды (NaCO3), 42 тринатрийфосфата (Na3P04), 42 буры (Na2S2O3).
На выходной стороне травильной ванны расположен двойной комплект управляющих отжимных роликов.
Ванна промывки выполнена как пятиступенчатая каскадная промывка и состоит из пяти секций общей длиной 23,7 м. Комплект отжимных роликов за ванной аналогичен отжимным роликам за ванной травления.
Выходная часть травильного агрегата оборудована двумя натяжными роликами диаметром 1300 мм, длиной бочки 2100 мм и двумя прижимными роликами диаметром 254 мм и длиной бочки 800 мм. Петлевое устройство на выходе предназначено для образования запаса полосы (450 м). Горизонтальные петли (четыре ветви) располагаются под травильными ваннами. Нижняя часть петли поддерживается рольгангами, а верхняя - тележкой и роликам поворотных устройств. Натяжных тележек две. Натяжение, создаваемое приводами петлевых тележек, 45-68 кН.
Комплект натяжных роликов № 3 предназначен для образования натяжения полосы при скоростях < 60 м/мин.
Боковые кромки на протравленной полосе обрезают на дисковых ножницах. В агрегате установлено двое дисковых ножниц, при работе одних настраивают другие, что уменьшает время на замену и кантовку ножей. Диаметр ножа до перешлифовки 400 мм, после 360 мм, толщина ножа до перешлифовки 40 мм, после 20 мм. Ножей в установке четыре. Максимальная ширина обрезаемой кромки на одну сторону 35 мм, минимальная 10 мм. Ножницы исполнены в виде протяжных, т.е. с неприводными ножевыми валами. В агрегате - двое кромкокрошительных ножниц. Для натяжения 10,8-108 кН полосы перед моталкой установлены натяжные и прижимные ролики.
Промасливающая машина предназначена для смазки полосы антикоррозионным защитным маслом или эмульсией из 12 распылительных сопел, наносимыми в зависимости от скорости и ширины непосредственно или через войлочный ролик. Лишнее масло отжимается парой гуммированных роликов диаметром 200 мм, длиной бочки 2,1 м.
Техническая характеристика механических ножниц поперечной резки сварных швов, вырезки проб и уборочного устройства от них аналогична ножницам поперечной резки входной части.
После порезки полосу при помощи комплектов отклоняющих роликов № 1 и № 2 подают в барабан моталок плавающего типа с электрогидравлической следящей системой. Моталки приводятся от 0-810/810-кВт двигателя (10-450/1350 об/мин). Максимально допустимая масса рулона 45 т, натяжение полосы 105 кН.
С барабана моталки рулоны снимателем передают на горбунковый цепной транспортер, состоящий из тележки перемещения и съемной вилки, и устройством для транспортировки - на склад травленых рулонов. Устройство для транспортировки состоит из разгрузочного двухцепного 40-м транспортера для 11 рулонов, мульдовой шагающей балки для трех рулонов, горбунковой шагающей 14-м балки для четырех рулонов и двухцепного 185-м транспортера для 26 рулонов. Скорость транспортировки 9-12,5 м/мин.
На складе рулоны маркируют, обвязывают одной или двумя металлическими лентами, взвешивают на 50-т весах с фотоэлектрическим ощупывающим устройством и дистанционным печатающим устройством. Линия непрерывного травления автоматизирована. В результате автоматизации с использованием УВМ осуществляется управление механизмами агрегата входной, центральной и выходной частей, последовательностью операций по транспортировке полос, выбор и управление технологическим режимом обработки полосы, слежение за материалом с момента подачи рулона к разматывателю и до маркировки его с передачей данных на УВМ стана по машинной связи. [ 1 ]
3 Расчет энергосиловых параметров холодной прокатки. Математическое обеспечение
Оптимизация технологических режимов обжатий при холодной прокатки лент, листов и полос относится к важнейшим факторам, обеспечивающим повышения технико-экономических показателей процесса прокатного производства в целом. При этом значение оптимальных технологических режимов обжатий и соответствующим им энергосиловых параметров процесса прокатки является необходимым с точки зрения повышения научной обоснованности проектно-конструкторских решений, используемых как при создании новых, так и при модернизации действующих прокатных станов.
Непосредственно в качестве целевых функций при оптимизации технологических режимов обжатий были использованы математические модели процесса холодной прокатки, организованные на выполнение критериев полной загрузки механического оборудования.
Программное обеспечение решения поставленной задачи оптимизации было осуществлено на основе алгоритмического метода целенаправленного перебора вариантов. Аналитическое описание данного метода может быть представлено в виде:
где - величина абсолютного обжатия полосы в i-ом проходе;
- порядковый номер очередного цикла итерационной процедуры решения;
- шаг изменения величины абсолютного обжатия, количественная оценка которого была принята переменной в зависимости от степени приложения промежуточных результатов к исходному;
- заданные значения параметров
,
,
непосредственно связанных с принятым критерием оптимальности;
Учитывая изложенное выше и исходя из логики функциональных связей между величиной абсолютного обжатия и энергосиловыми параметрами процесса горячей прокатки, решение задачи оптимизации по условию полной загрузки механического оборудования можно представить в виде последовательных пошаговых приращений:
в случае одновременного выполнения каждого из условий: ,
,
.
В случае же невыполнения хотя бы одного из этих условий, изменяем величину шагового приращения:
где - исходная толщина листа в данном проходе.
Таким образом, может быть определено абсолютное обжатие, соответствующее условию обеспечения максимально допустимой загрузки и, как следствие, условию достижения максимальной производительности механического оборудования конкретных прокатных станов.[ 4 ]
4 Определение технологических режимов прокатки листа 0.35×1400
Выбираем в качестве заготовки для производства листа 0.35×1400 (материал ‑ сталь 08кп) полоса толщиной 1,8 мм, шириной 1400мм и длиной 1500мм.
Определим энергосиловые параметры прокатки в черновой клети. Расчет проведем по инженерной методике.
Начальная толщина раската h0=1,319мм, абсолютное обжатие ∆h=0,939мм, ширина проката 1400мм, радиус валков R=300мм, скорость прокатки 43,8 м/с.
коэффициенты регрессии;
Удвоенное сопротивление сдвигу: МПа.
Т.к. переднее и заднее натяжения отсутствуют, то ξ0=ξ1=1
=2f l / h= 2∙0,09∙4.54/0.069=11.84
рСР=n 2KC=0,043∙610=26.72 МПа
Тогда
N = M = M V / R=85,3∙43,8/0,3=0,932 кВт
При выбранном режиме прокатки энергосиловые параметры в клети не превышают предельных значений.
Дальнейший расчет производим на ЭВМ. Результаты расчета приведены в таблице 4.1.
Таблица 4.1 – Результаты расчета энергосиловых параметров.
№ прохода | H0, мм | h0, мм | h1, мм | ε | 2Kc, МПа | Р, МН | М, кН∙м | N, МВт | V, м/с |
1 | 1.8 | 1.8 | 1.319 | 0.267 | 463 | 9.99 | 138.8 | 1.11 | 2 |
2 | 1.8 | 1.319 | 1.125 | 0.147 | 610 | 9.98 | 85.3 | 0.932 | 2.73 |
3 | 1.8 | 1.125 | 0.993 | 0.117 | 657 | 9.99 | 70.1 | 0.897 | 3.2 |
4 | 1.8 | 0.993 | 0.894 | 0.100 | 687 | 9.98 | 60.5 | 0.877 | 3.62 |
5 | 1.8 | 0.894 | 0.815 | 0.088 | 707 | 9.98 | 53.7 | 0.865 | 4.03 |
Таблица 4.2 – Результаты расчета энергосиловых параметров.
№ прохода | H0, мм | h0, мм | h1, мм | ε | 2Kc, МПа | Р, кН | М, кН∙м | N, кВт | V, м/с |
1 | 0.81 | 0.815 | 0.558 | 0.315 | 489 | 11.98 | 136.7 | 1.094 | 2 |
2 | 0.81 | 0.558 | 0.470 | 0.128 | 642 | 11.97 | 76 | 0.888 | 2.92 |
3 | 0.81 | 0.470 | 0.413 | 0.121 | 682 | 11.94 | 60.1 | 0.833 | 3.47 |
4 | 0.81 | 0.413 | 0.372 | 0.1 | 706 | 11.91 | 50.5 | 0.797 | 3.95 |
5 | 0.81 | 0.372 | 0.350 | 0.058 | 716 | 9.94 | 29.2 | 0.513 | 4.38 |
Энергосиловые параметры не превышают допустимых значений в клетях. Следовательно, данный режим загрузки стана является наиболее оптимальным и рациональным. [ 4 ]