126069 (717694)

Файл №717694 126069 (Механические свойства конструкционных пластмасс)126069 (717694)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Содержание

Введение

1. Механические свойства конструкционных пластмасс

1.1 Зависимость деформационных свойств пластмасс от температуры

1.2 Зависимость прочности полимеров от скорости нагружения

1.3 Усталостные свойства пластмасс

2. Проектирование экономически эффективных изделий из пластмасс

Заключение

Литература

Введение

Тема реферата «Механические свойства конструкционных пластмасс».

Изделия из пластмасс и резины в настоящее время настолько распространены, что по своему объему и ассортименту превосходят все другие изделия, применяемые человечеством в своей повседневной жизни. Специальность «Технология переработки полимеров» - одна из новых специальностей. Она готовит специалистов в области изготовления полимерных изделий. Полимеры – уникальные вещества с целым рядом особенностей строения и свойств, которые обязательно надо учитывать при создании технологий и оборудования переработки полимерных материалов в изделия. Полимерные изделия в зависимости от назначения могут иметь самую разнообразную форму и размеры, поэтому перед изготовлением изделие надо спроектировать.

Полимерные изделия – это изделия из пластмасс или резины. При сходной высокомолекулярной природе свойства этих материалов настолько различаются, что принципы проектирования и расчета изделий не могут быть одинаковыми. Пластмассы должны иметь достаточную жесткость, а резины – эластичность.

1. Механические свойства конструкционных пластмасс

Для изделий из пластмасс важно не только обеспечить их способность сопротивляться разрушению, т.е. прочность, но и способность сохранять форму и размеры под действием механической нагрузки, т.е. иметь необходимые деформационные свойства. Прочностные и деформационные свойства составляют механические свойства, или, как чаще их называют, - физико-механические свойства. Физико-механические свойства пластмасс, как и других полимерных материалов, зависят от многих факторов: от их химического строения, степени полимеризации или молекулярной массы, структуры макромолекул и их взаимного расположения, а также от надмолекулярной структуры твердого полимера. Особенности строения пластмасс обусловливают реологические явления, такие как релаксацию, механический гистерезис, последействие и течение. Все это приводит к тому, что деформационные свойства пластмасс отличаются от свойств традиционных конструкционных материалов. Деформационные свойства пластмасс выражают на обобщенных индикаторных диаграммах, связывающих деформации и напряжения во времени.

I квадрант индикаторной диаграммы построен в координатах напряжение σ и относительная деформация ε (рис. 1). При растяжении на участке ОА наблюдается практически линейная зависимость σ – ε, т.е. выполняется закон Гука. Деформация на этом участке является упругой, восстанавливаемой. Постепенный переход на криволинейный участок АВ соответствует характерной для полимерных материалов высокоэластической деформации. Если в точке В прекратить нагружение материала и проводить наблюдение во времени при ε = const, то протекаемый процесс релаксации напряжений во времени от σ0 до σ может быть показан в IV квадранте. Скорость релаксации определяется скоростью перехода макромолекул и их сегментов из неравновесного состояния в равновесное в результате их теплового движения. В связи с этим скорость релаксации зависит от температуры, размеров кинетических единиц и энергии их взаимодействия, т.е. от температуры и природы полимера.

На участке В´В´´ происходит изменение деформации во времени, которое можно представить кривой А´Е во втором квадранте. Скорость деформации постепенно уменьшается на участке А´Д до постоянного значения, характеризующего условия вязкого течения материала. Участок ДЕ соответствует вязкому течению материала при σ = const. За точкой Е начинается участок упругого упрочнения ЕЕ´, после чего происходит разрушение.

σ

σ = const x

В В´ В´´

ε = const σ0 А

C

σ

τ О ε0´А0 Аε´ E´´ E1´ ε

Д

σ = const

Е

Е´


Рисунок 1 - Индикаторная диаграмма

Общая деформация складывается из упругой ОА0, высокоэластической А0А0´, течения А0Е´´ и упрочнения перед разрушением Е´´Е1´.

Если в точке В´ освободить материал от нагрузки, то процесс разгружения будет происходить по-другому. Разгрузка характеризуется запаздыванием деформации по отношению к напряжению. Сначала происходит упругое восстановление (участок А´А´´ во втором квадранте), а затем деформация восстановления первоначального размера протекает с запаздыванием (упругое последействие). Петля на индикаторной диаграмме показывает работу, затраченную на потери внутри материала вследствие механического гистерезиса.

Установление критических точек и построение таких диаграмм для различных пластиков позволяет правильно выбрать режим допустимого деформирования при проектировании изделий их пластмасс.

1.1 Зависимость деформационных свойств пластмасс от температуры

При температурах ниже Тхр разрушающие деформации являются упругими и не превышают одного процента. В интервале температур от Тхр до Тс деформации складываются из упругих, высокоэластических и вязкотекучих и достигают до разрушения нескольких десятков процентов. В этом интервале прочность пластмасс характеризуется пределом текучести – напряжением вынужденной эластичности для стеклообразных полимеров или напряжением рекристаллизации для кристаллических полимеров. Предел текучести определяется по образованию шейки при растяжении образцов.

В интервале Тс – Тт в полимере развиваются высокоэластические деформации, равные нескольким сотням процентов. Выше Тт происходит течение расплава. Различные полимеры характеризуются разными температурами хрупкости и стеклования.

ПолимерТхр, 0С Тс 0С

Полистирол90100

Полиметилметакрилат10110

Поливинилхлорид-9081

Полипропиленот -10 до -20-30

ПВС -86

Прочность полимеров повышается с понижением температуры. Наибольшая термостойкость, т.е. способность сохранять прочность при повышенных температурах, характерна для стеклопластиков и полимерных материалов с минеральными наполнителями.

1.2 Зависимость прочности полимеров от скорости нагружения

Прочность полимерных материалов с ростом скорости нагружения растет. Журков вывел уравнение:

σв = ln(A-α)/α + ½ ln v,

где σв – разрушающее напряжение (прочность);

А и α – постоянные эмпирические коэффициенты;

v – скорость нагружения.

Это уравнение справедливо только для пластмасс. В отличие от них у эластомеров при больших скоростях деформации предел прочности снижается.

1.3 Усталостные свойства пластмасс

При действии периодической нагрузки малой величины, не приводящей к разрушению материала, основным фактором является величина внутреннего трения, обусловливающего рассеяние энергии (механический гистерезис). Сдвиг по фазе между напряжением и деформацией учитывается динамическим модулем. Он зависит как от структуры пластмассы, так и от скорости нагружения. Так, для полистирола при скорости нагружения 0,002 м/c динамический модуль равен 4 МПа, а при 0,06 м/с – 3,4 МПа. При этих же скоростях нагружения динамический модуль для ПММА равняется соответственно: 4,8 и 3 МПа, для ПЭНП – 0,3 и 0,29 МПа.

На усталостные свойства пластмасс влияют температура, влажность, агрессивность среды, вид периодически повторяющегося переменного напряженного состояния, частота колебаний, форма и размеры изделия.

Предельное значение усталостных напряжений, ниже которого разрушение не происходит, называется пределом выносливости (σ-1). Он существует только для чистых полимеров. Наполненные полимерные материалы не имеют истинного предела выносливости (или он очень низок). Поэтому для них за предел выносливости принимают разрушающее напряжение, соответствующее 107 – 108 циклов.

Стойкость к усталости характеризуется коэффициентом усталости:

К = σ-1·100 / σв, %,

где σв – предел прочности при статической нагрузке.

Коэффициент усталости равен 0,717 для ПВХ, 0,715 для полистирола, 0,142 для полиэтилена низкой плотности.

При переменных и ударных нагрузках долговечность изделий зависит от демпфирующей способности применяемых материалов. Пластмассы имеют более высокую демпфирующую способность, чем металлы.

Коэффициент относительной демпфирующей способности может быть рассчитан по формуле:

ηд = 2·Θ·Е·100 / Р2,

где Θ – работа демпфирования;

Е – модуль упругости;

Р – нагрузка.

Коэффициент демпфирующей способности равен: для эбонита – 4; для стали – 0,2; для текстолита – 11; для фибры – 21,5. Наполнители повышают демпфирующую способность.

По Журкову предел прочности определяется не только механическим напряжением, но и тепловым движением. Приложенная нагрузка снижает внутреннюю энергию химических связей и способствует разрушению материала под действием теплового движения.

Время сопротивления материала нагружению (или долговечность):

τ = τ0·е(Uγ·σ)/k·T,

где τ0 – постоянный коэффициент, равный 10-12 – 10-13;

U – энергия химических связей;

σ – напряжение;

k – постоянная Больцмана;

Т – абсолютная температура.

При постоянной температуре:

τ = А·е –ά·σ,

где А и ά – постоянные коэффициенты.

Изделия из пластических масс имеют самое разнообразное назначение и эксплуатируются в самых различных условиях: при быстрых и медленных нагружениях, при низких и повышенных температурах и т.п. При этом они должны сохранять свое функциональное назначение в течение довольно длительного срока службы, быть долговечными и надежными. Знание механических свойств пластмасс и их зависимости от различных эксплуатационных факторов является залогом правильного проектирования изделий из этих уникальных материалов.

2. Проектирование экономически эффективных изделий из пластмасс

Цель разработки новых или улучшения существующих полимерных изделий состоит в том, чтобы достичь технического совершенства конструкции при условии минимизации издержек производства. Главными задачами, решаемыми на этапе проектирования, являются выбор полимерного материала, выбор технологии изготовления, расчет прочности и проектирование формы.

Высококачественное и рентабельное полимерное изделие может быть изготовлено только при условии полного анализа всех перечисленных этапов проектирования и последовательного их выполнения. Функциональные возможности и рентабельность изделий из полимеров часто вступают в противоречие, поэтому при проектировании необходимо учитывать как технические, так и экономические параметры.

Необходимо помнить, что свойства полимерных материалов не являются неизменными. Они могут изменяться под влиянием окружающей среды, технологии переработки, конструкции изделия и условий эксплуатации. Свойства определяют испытаниями в лабораторных условиях. Образцы для испытаний изготавливают в полированных формах при оптимальных технологических параметрах и испытывают стандартными методами. Однако реальные условия эксплуатации отличаются от приведенных в методиках, так как нельзя предусмотреть все варианты условий эксплуатации. Поэтому, начиная проектирование нового полимерного изделия, необходимо проанализировать и составить перечень технических требований и граничных условий. Его структура имеет вид:

1. Общая информация

1.1. Назначение изделия

Характеристики

Тип файла
Документ
Размер
116,96 Kb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6553
Авторов
на СтудИзбе
299
Средний доход
с одного платного файла
Обучение Подробнее