125981 (717686), страница 4
Текст из файла (страница 4)
Отрицательно влияет на горячую прокатку и кислород, но при больших концентрациях (0,1—0,2%). Другие примеси (олово, цинк, никель, серебро) не ухудшают пластичности меди и других механических свойств, так как, присутствуя в небольших количествах, они входят в твердый раствор.
Наиболее распространенными и известными сплавами меди являются латуни и бронзы.
Латунями называют группу сплавов меди с цинком, получившую наиболее широкое применение в технике. В группу латуней входят томпак (90% и более меди, остальное цинк, если эти сплавы содержат от 79 до 86% меди, их называют полутомпак) и много других, не только двойных, но и более сложных сплавов.
Механическая прочность латуней выше, чем меди, и они хорошо обрабатываются резанием. Большим их преимуществом является их пониженная стоимость, так как входящий в них цинк значительно дешевле меди. Латуни широко применяют в приборостроении, в общем и химическом машиностроении.
АЛЮМИНИЙ И ЕГО СПЛАВЫ
Алюминий — второй (после железа) металл современной техники. Его мировое производство в ближайшие годы достигнет 15 млн. т. в год.
Наиболее важным свойством алюминия, определяющим его широкое применение в технике, является его небольшая плотность, равная 2,7 г/см3, т. е. алюминий почти в три раза легче железа.
Вторым очень важным свойством алюминия является его относительно высокая электропроводность, которая равна 34104 Ом-1см-1, что составляет 57% электропроводности меди. Температура плавления алюминия 660° С, температура кипения около 2500° С.
Кроме того, из свойств алюминия следует отметить его хорошую теплопроводность и теплоемкость. Алюминий химически стоек против органических кислот и хорошо сопротивляется воздействию азотной кислоты. Он очень быстро окисляется на воздухе, покрываясь тонкой пленкой окиси, которая, в отличие от окиси железа, не пропускает кислород в толщу металла. Следовательно, алюминий, несмотря на быстрое окисление при нормальных условиях коррозионностоек. Его кристаллическая решетка. Механические свойства алюминия сравнительно невысоки. Сопротивление на разрыв находится в пределах от 90 до 180 МПа (от 9 до 18 кгс/мм2) НВ20—40; он имеет высокую пластичность, что дает возможность прокатывать его в очень тонкие листы. Необходимо отметить, однако, трудность обработки чистого алюминия резанием, а также относительно высокую линейную усадку — 1,8%.
Вторая область его применения — электротехника. Это обусловлено тем, что алюминий менее дефицитен и встречается в природе более широко, чем медь; электропроводность алюминия меньше меди, хотя провод из алюминия такой же электропроводности, как аналогичный медный провод, получается толще, но зато легче. Это важно для проводки во всех летательных и транспортных аппаратах, а также для проводов воздушных линий электропередач, где, применяя алюминиевые провода, можно реже ставить опоры.
Алюминий широко применяется в металлургии, где используется его большое сродство к кислороду для получения в чистом виде дорогих и редких металлов (например, хрома, ванадия и др.), низкие сорта алюминия используются для раскисления стали.
Руды алюминия
Алюминий — наиболее распространенный металл в земной коре (8,8%); в чистом виде он не встречается, зато минералов, содержащих алюминий, очень много.Основным сырьем для получения алюминия служат бокситы.
Бокситы представляют собой сложную горную породу, которая содержит алюминий в виде гидроокисей. Вторая руда, которая используется для производства алюминия в нашей стране, — нефелин. Химическая формула этого минерала
Na(K)2OAl2O3-2Si02
Нефелины сопутствуют горной породе, которая называется апатит. Апатитонефелиновых пород очень много на Кольском полуострове. Они давно разрабатываются для получения фосфорных удобрений и их отходом являются нефелины.
Производство глинозема.
Электротермические способы. Суть этих способов заключается в восстановлении алюминиевой руды в электропечи; примеси, имеющиеся в руде, восстанавливают до элементарного состояния и, переводя их в металл (кремнистый чугун), оставляют в шлаке невосстановленной только окись алюминия, но в шлаке остаются некоторые частично невосстановленные примеси. Эти способы применяются для получения глинозема, идущего на изготовление шлифовальных кругов и других абразивных изделий, но для производства высококачественного алюминия такой глинозем не пригоден.
Кислотные способы. Сущность этих способов сводится к тому, что алюминиевая руда подвергается обработке какой-либо минеральной кислотой, например соляной или серной. В процессе такой обработки кислота взаимодействует с окисью алюминия и получается соответствующая растворимая соль (например, хлористый алюминий).
Щелочные способы. Эти способы в большинстве стран применяют и для получения чистой окиси алюминия. Суть щелочных способов заключается в том, что алюминиевая руда подвергается воздействию какой-либо щелочи (едким натром, кальцинированной содой и др.).
5. Рафинирование алюминия
Рафинирование алюминия осуществляется в расплавленной среде. Анодом является сплав загрязненного алюминия с тяжелым металлом, к которому через подовые угольные блоки 1 подводится ток большой силы (рис. 160), катодом — чистый рафинированный металл, отрицательный полюс к которому подводится с помощью подвесных графитовых катодов 5.
В качестве электролита обычно применяют смесь ВаС12 (60%), A1F3 (23%) и NaF (17%), имеющую плотность в условиях процесса 2,7 (плотность чистого алюминия в этих условмях 2,3). В качестве утяжелителя для анодного сплава наиболее удобно применять медь, которую обычно вводят в количестве 25%, что вполне предохраняет анодный сплав от всплывания со дна электролизера (плотность 3,0—3,5).
Сущность процесса электролитического рафинирования по трехслойному методу сводится к следующему. Если на дно электролитической ванны (рис. 160) поместить расплавленный анодный сплав из алюминия-сырца и меди, а над ним электролит указанного выше состава и через них пропускать постоянный электрический TOKJ то через некоторое время на катоде начнется выделение чистого алюминия. По мере хода процесса содержание алюминия в анодном сплаве постепенно уменьшается, а количество чистого алюминия на катоде увеличивается.
Высота слоя анодного сплава в ванне 200—250 мм, электролита — 120—150 мм. Рекомендуется всегда иметь на катоде слой металла толщиной около 100 мм. Во избежание окисления катодного металла его засыпают сверху тонким слоем порошкообразного электролита. Процесс ведут при температуре 760—800° С. Напряжение на ванне выдерживают в пределах 6—7 В. При этом может быть получен алюминий чистотой до 99,99%.\
Рафинирование по этому методу обходится очень дорого и поэтому применяется в ограниченных масштабах.
Для получения алюминия особой чистоты широкое применение получил метод зонной перекристаллизации, в основе которой лежит не одинаковое распределение примесей алюминия (или другого рафинируемого металла) между жидкой и твердой фазой при частичном расплавлении.
Процесс зонной перекристаллизации алюминия практически ведут следующим образом. Слиток алюминия высокой чистоты (А99, А995), очищенный от пленки окислов травлением, помещают в графитовую лодочку и затем в кварцевую трубку, внутри которой создается - вакуум (остаточное давление не выше 0,1 Па (10-4— 10-5 мм рт. ст.). Снаружи вдоль трубки медленно (1 см в минуту) передвигают узкий нагреватель (обычно кольцо высокочастотного индуктора), с помощью которого создается узкая расплавленная зона слитка (25—30 мм). Если в алюминии нет примесей второй группы, более чистой получается та часть слитка, с которой начиналась зонная переплавка. Обычно зонную переплавку повторяют в одном направлении подряд 10—15 раз, после чего можно получить металл особой чистоты (до 99,9999% А1).
ТИТАН, МАГНИЙ И ИХ СПЛАВЫ
Титан — металл серебристого цвета с голубоватым отливом; имеет невысокую плотность 4,507 г/см3; плавится при температуре около 1660° С, кипит при 3260° С. Титан имеет две аллотропические модификации; до 882° С существует -титан, имеющий гексагональную решетку и при более высоких температурах -титан с кубической объемноцентрированной решеткой.
Механические свойства титана значительно изменяются от содержания в нем примесей. Чистый титан ковок и имеет невысокую твердость НВ ~ 70; технический металл хрупок и тверд (НВ180— 280).
Вредными примесями титана являются азот и кислород, резко снижающие его пластичность, а также углерод, который при содержании более 0,15% снижает ковкость, затрудняет обработку титана резанием и резко ухудшает свариваемость. Водород сильно повышает чувствительность титана к надрезу, поэтому этот эффект называют водородной хрупкостью.
На поверхности титана образуется стойкая оксидная пленка, вследствие чего титан обладает высокой сопротивляемостью коррозии в некоторых кислотах, в морской и пресной воде. На воздухе титан устойчив и мало изменяет свои механические свойства при нагреве до 400° С. При более высоком нагреве он начинает поглощать кислород и постепенно ухудшаются его механические свойства, а выше 540° С—становится хрупким. При нагреве выше 800" С титан энергично поглощает кислород, азот и водород, что используется в металлургии для раскисления стали.
Титан давно и широко используется как хороший раскислитель и легирующая добавка в стали и сплавы цветных металлов.
Восстановление тетрахлорида титана магнием
Восстановление тетрахлорида титана ТiСl4 проводят периодически в цилиндрических стальных герметичных ретортах диаметром от 850 до 1500 мм и высотой от 1800 до 3000 мм. Такой объем реторты позволяет получать за одну операцию до 1500 кг титановой губки.
Реторты устанавливают вертикально обычно в электрическую печь сопротивления. Сверху реторта закрыта крышкой, имеющей патрубки для загрузки магния, подачи Т1С14 откачки воздуха и подвода аргона (рис. 168).
После установки реторты в печь и откачки из нее воздуха она заполняется осушенным аргоном и нагревается до 740—800° С, после чего в нее заливают жидкий магний и начинают подачу жидкого тетрахлорида титана. Процесс получения титана можно упрощенно представить следующим уравнением реакции:
ТiСl4(газ) + 2Мg(ж) = -2МgС12(ж) + Тi(тв) + 935 000 Дж (223 000 кал)
После интенсивного развития реакции выключают нагрев и поддерживают температуру в пределах 750—850° С. Титан выделяется в реторте в виде хорошо развитых дендритов, которые получили название титановой губки.
Титановая губка дробится и тщательно сортируется. Наиболее чистая губка идет на переплавку; низкосортная, содержащая включения хлоридов, брикетируется и используется как раскислитель стали в черной металлургии. Для получения из титана и его сплавов ответственных изделий очень важна его хорошая пластичность и свариваемость, а также термостойкость..
Получение титана высокой чистоты
Обычная чистота титана, получаемого переплавкой губки, составляет 99,6—99,7°о, однако требуется и более чистый металл, содержащий 99,9 % титана и выше.
Чистый титан получают в небольших количествах переработкой губки иодидным способом, использующим обратимость реакции
Тi + 2I2=ТiI4
При температуре 100—200° С реакция протекает вправо, а при 1300-1400°С- -влево.
Губку загружают в кольцевое пространство между стенкой реторты и молибденовой сеткой (рис. 171). На молибденовых держателях зигзагообразно закрепляют проволоку из чистого титана диаметром 3—4 мм и длиной около 10 м. После герметичного укрепления крышки и откачки воздуха до остаточного давления 0,1—0,01 Па (10~4—10~5 мм рт. ст.) реторту помещают в термостат с температурой 100—200° С и внутри ее особым приспособлением разбивают ампулу с иодом. Пары иода, заполняя все пространство реторты, реагируют с титановой губкой и стружкой, образуя пары йодистого титана.
Титановую проволоку накаливают до 1300—1400° С, пропуская через нее ток. На раскаленной проволоке эти пары разлагаются, образуя кристаллы чистого титана, и освобождают иод, который вновь реагирует с титановой губкой, нагретой до 100—200° С.
Общие сведения о магнии
Магний — серебристо-белый металл. Важнейшее его физическое свойство—малая плотность, равная 1,738 г/см3 (при 20ºС).
Природный магний состоит из смеси трех стабильных изотопов. Причем искусственный изотоп Мg28 с полураспадом в 21,3 ч может быть применен в качестве радиоактивного индикатора. Кристаллы магния обладают компактной гексагональной структурой.
Магний в виде слитков или изделий не огнеопасен. Возгорание магния может произойти лишь при температуре, близкой к точке его плавления (651° С) или после расплавления, если он не изолирован от кислорода воздуха. Магний не магнитен и не искрит при ударах или трении.
Предел прочности и другие механические свойства магния очень зависят от его чистоты и способа приготовления образца.
В настоящее время для получения магния применяют: магнезит, доломит, карналлит, а также морскую воду и отходы ряда производств.
Магнезит — углекислый магний МgСО3. Природный минерал магнезит обычно содержит карбонат кальция, кварц, а также примеси других минералов, включающих окислы алюминия и железа.
Для производства магния применяют только чистый каустический магнезит, полученный по реакции МgСО3 = МgО + СО, при нагревании (обжиге) природного магнезита до 700—900º С
Дoломит— горная порода, представляющая собой двойной карбонат кальция и магния МgСО3-СаСО3. Доломиты обычно содержат примеси кварца, кальцита, гипса и др. Содержание и окраска примесей определяют окраску породы. Доломит широко распространен в природе и составляет около 0,1% всех горных пород, входящих в состав земной коры. Доломит так же, как и магнезит, применяемый магниевой промышленностью, предварительно обжигают до получения смеси окислов МgО и СаО.
Карналлит МgС12 • КС1 · 6Н2О — природный хлорид магния и калия — очень гигроскопичное кристаллическое вещество, обычно окрашенное примесями в розовый, желтый или серый цвет.
Понятие об электролитическом способе получения магния
В основном магний получают электролитическим способом, важнейшими стадиями которого являются: а) получение чистых безводных солей магния; б) электролиз этих солей в расплавленном состоянии и в) рафинирование магния.
Известны варианты электролитического способа получения магния, различающиеся по составу солей, поступающих на электролиз (карналлит, хлористый магний и т. д.), и по способу получения этих солей (хлорирование магнезита, обезвоживание хлористого магния н т. п.). Электролиз проводят в расплавленных хлоридах магния, калия, натрия и кальция, так как при электролизе водных растворов его солей из-за отрицательного потенциала магния на катоде выделяется только водород. Схема электролизера для получения магния изображена на рис. 172.
Анодами служат графитные плиты 4, катодами — стальные пластины 2. Так как плотность расплавленного электролита больше, чем плотность магния в этих же температурных условиях, то выделяющийся на катоде жидкий магний, не растворяясь в электролите, в виде капель всплывает на его поверхность. На аноде выделяется газообразный хлор, который также поднимается и выбрасывается из электролита. Во избежание взаимодействия хлора и магния и короткого замыкания анода и катода расплавленным магнием вверху устанавливают перегородку /, которую принято называть диафрагмой. Во время электролиза расходуется хлористый магний, периодически вводимый в электролит.