125070 (717530), страница 2

Файл №717530 125070 (Легирование полупроводниковых материалов) 2 страница125070 (717530) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Анализ теоретического выхода процесса зонной плавки при этих условиях показал, что выход тем больше, чем коэффициент распределения ближе к 1; он возрастает с увеличением приведенной длины кристалла A = L/l, где L — длина кристалла, l — длина зоны, и в пределе стремиться к (A − 1)/A. Выход в этом случае может быть сделан достаточно близким к 100% для однократного прохода расплавленной зоны через равномерный в среднем по составу образец. Таким образом, метод зонной плавки может удовлетворить большинству практических требований при получении однородных кристаллов, если только приведенная длина слитка достаточно велика.

Эффективным способом повышения теоретического выхода при выращивании кристаллов методом зонной плавки является выравнивание существенно неоднородного распределения примесей в начальной части слитка. Для этого в начальной части кристалла длиной в одну зону создается средняя концентрация примеси в K раз меньшая, чем в остальной части кристалла. Такой метод создания исходного распределения примеси получил название целевой загрузки. Для примесей с K < 1 и с равномерным в среднем начальным распределением по объему кристалла необходимое распределение проще всего создается легированием зоны в начальной части образца. После расплавления зоны в нее вводится примесь в таком количестве, что при движении зоны вдоль образца она с самого начала имеет постоянный состав: в нее через границу плавления входит ровно столько примеси, сколько уходит через границу кристаллизации. Вследствие этого состав выращиваемого кристалла постоянен по всей длине за исключением его конца, где процесс идет по закону нормальной направленной кристаллизации.

Также на практике часто используется метод прохождения легирующей зоны через чистый исходный образец для получения равномерно легированных кристаллов. Суть метода сводится к следующему. В расплавленную в начале чистого кристалла зону вводят легирующую примесь. Для примеси с K << 1 при кристаллизации расплава из зоны уходит настолько мало примеси, что состав жидкой фазы практически не меняется и, таким образом, получается однородно легированный материал.

Поэтому этот метод наиболее эффективен для примесей с K << 1.

3.2 Активные методы выравнивания состава кристаллов

Эти методы служат для повышения выхода материала с равномерным распределением примеси. Их отличительной особенностью является то, что в течение всего кристаллизационного процесса в него вводятся определенные изменения. Активные методы выравнивания состава подразделяются на две основные группы.

Первая — включает методы, в которых с целью поддержания концентрации примеси в расплаве в течение всего процесса выращивания монокристалла постоянно проводят подпитку расплава либо нелегированной твердой, жидкой или паровой фазой (если K < 1), либо фазой, содержащей легирующую примесь (если K > 1). В этих методах в процессе кристаллизации должны соблюдаться следующие условия: CL = const, K = const, V = const, CS = KCL = const. Система процесса выращивания однородного кристалла в наиболее общем виде включает в себя следующие элементы: растущий кристалл, расплав и поступающую в него подпитывающую массу.

Вторая — методы, в которых изменяются сами условия роста монокристаллов. Процессы выращивания однородных кристаллов этими методами протекают при следующих условиях: CL ≠ const; K ≠ const; f ≠ const; CS = KнCнL = KкCкL = const, где н — начало, а к — конец. При этом программа изменения кристаллизационного процесса обеспечивает постоянство скорости захвата примеси в течение всего процесса выращивания монокристалла.

Помимо этих двух групп методов возможны и их комбинации. Рассмотрим сначала первую группу методов более подробно.

3.3 Механическая подпитка расплава

Механическая подпитка расплава твердой фазой

Возможны два способа:

Идея первого способа состоит в опускании в расплав подпитывающего стержня (рис. 2). Процессом подпитки можно управлять, меняя площадь поперечного сечения подпитывающего стержня, его состав и механическую скорость его подачи. При необходимости в расплав может одновременно вводиться несколько стержней. Для того, чтобы получить математическое выражение, описывающее процесс выравнивания состава в данном методе, необходимо составить уравнение баланса примеси в расплаве и приравнять изменение концентрации примеси нулю. Из этого уравнения для любого варианта механической подпитки расплава опускающимся стержнем легко найти условия, обеспечивающие получение однородного кристалла. Так, для наиболее интересного с практической точки зрения режима получение легированных кристаллов решение уравнения сводится к отысканию либо нужной концентрации подпитывающего стержня при заданных остальных параметрах, либо к отысканию его площади поперечного сечения. В частности, если сечения вытягиваемого кристалла и стержня подпитки равны, и равны их плотности, то состав подпитывающего стержня должен быть равен составу растущего кристалла. Этот способ выравнивания состава позволяет получать однородные монокристаллы с высоким выходом и большим диапазоном уровней легирования. Он используется и для выращивания монокристаллов твердых растворов, например, в таких системах как Ge–Si, Bi–Sb, InAs–GaAs и т.д.

Рис. 2. Схема метода механической подпитки расплава твердой фазой: 1 — питающий кристалл; 2 — нагреватель для подогрева питающего кристалла; 3 — тигель; 4 — выращиваемый кристалл; 5 — расплав; 6 — основной нагреватель.

2. Второй способ подпитки — метод расплавленного слоя (рис. 3). В этом случае слиток подпитывающего материала помещают в нижней части кристалла, выращивание которого ведут с вершины подпитывающего слитка, подплавляемого специальным нагревателем. Рост кристалла в этом случае сопровождается синхронным перемещением подпитывающего слитка вверх.

Рис. 3. Схема метода подпитки расплава твердой фазой (метод расплавленного слоя): 1 — питающий кристалл; 2 — нагреватель; 3 — выращиваемый кристалл, 4 — расплав.

Анализ условий выращивания однородного по составу кристалла и выхода годного материала в методе расплавленного слоя проводится аналогично предыдущему случаю. Однако этот метод имеет определенные преимущества: а) возникающие в расплаве концентрационные и тепловые потоки симметричны; б) процесс выращивания проводится в бестигельных условиях. Эти преимущества послужили стимулом для развития этого метода и изготовления легированных бездислокационных кристаллов полупроводников.

Механическая подпитка расплава жидкой фазой

Механическую подпитку кристаллизуемого расплава жидкой фазой чаще всего осуществляют при выращивании кристаллов методом Чохральского. Наибольшее распространение получили две модификации этого метода: первый — вытягивание монокристалла из расплава в плавающем тигле или в тигле, механически перемещающемся относительно внешнего контейнера, с которым они связаны капиллярным каналом (рис. 4); второй метод — вытягивание кристалла из тигля, разделенного перегородкой, через которую рабочая и подпитывающая части тигля соединены капиллярным каналом (рис. 5). В обеих модификациях в рабочем режиме в соединительном канале идет непрерывный поток расплава по направлению к рабочему объему. При этом перенос примесного компонента в канале состоит из двух частей: потока, вызванного потоком жидкости, и потока, обусловленного молекулярной диффузией. Для управления процессом выравнивания состава вытягиваемого кристалла необходимо, чтобы перенос примеси в канале осуществлялся только механическим перетоком расплава, а выравнивающее действие молекулярной диффузии было подавлено. Это условие легче всего выполняется при использовании длинных и узких соединительных каналов-капилляров.

В процессах с плавающим или механически перемещаемым рабочим тиглем наибольшее распространение получили режимы выращивания, при которых обеспечивается постоянство рабочего объема расплава. Поэтому распределение примесного состава в кристалле, выращиваемом этим методом, аналогично распределению состава в кристалле, получаемом с помощью метода зонной плавки. Однако рассмотренный метод получения однородно легированных кристаллов имеет ряд важных преимуществ по сравнению с методом зонной плавки: 1) отсутствие необходимости приготовления исходных образцов нужного состава; 2) возможность непосредственного наблюдения за процессом вытягивания; 3) постоянство рабочего расплава (в случае с плавающим тиглем) или возможность его варьирования в широких пределах в случае с механическим перемещением тигля.

Рис. 4. Основные варианты капиллярной подпитки: а — плавающий тигель; б —механически опускаемый тигель (1 — расплав; 2 — кристалл; 3 — внутренний тигель; 4 — капилляр трубка; 5 — внешний тигель; 6 — держатель внутреннего тигля; 7 — двигатель; 8 — держатель кристалла).

Рис. 5. Схема капиллярного двойного тигля: 1 — капиллярный канал; 2 —расплав; 3 — кристалл.

Процесс выращивания легированных кристаллов из капиллярного двойного тигля является своеобразной комбинацией процессов зонной плавки и нормальной направленной кристаллизации. Для обеспечения постоянства состава кристаллов, выращиваемых этим методом, достаточно, чтобы на протяжении всего процесса роста при изменении высоты расплава отношение площади рабочей части тигля ко всей его площади сохранялось постоянным. Это требование легко реализовать, например, в тигле внутри которого коаксиально устанавливается цилиндрическая перегородка с капиллярным каналом (рис. 5). Данный метод успешно применяется для легирования кристаллов примесями с K > 1 и K < 1. Однако анализ теоретического выхода годного материала показал, что для примесей с K << 1 применение капиллярных тиглей с целью получения однородно легированных кристаллов нецелесообразно.

Механическая подпитка расплава газовой фазой

Механическую подпитку кристаллизуемого расплава газовой фазой осуществляют как при выращивании кристаллов методом Чохральского, так и при выращивании методом зонной плавки. Подпитка может проводиться как нелетучей, так и летучей примесью.

В случае нелетучей примеси обычно эта примесь подводится к расплаву в виде летучего химического соединения. Последнее, взаимодействуя с расплавом, разлагается, вводимая примесь выделяется и легирует расплав. Такой процесс выделения примеси в результате химических реакций используется лишь для примесей с K > 1.

При легировании кристаллов летучими примесями, обладающими при температуре расплава высоким давлением пара, необходимо учитывать взаимодействие расплава с паровой фазой. Процесс подпитки кристаллизуемого расплава паровой фазой может осуществляться как путем поглощении примеси (K > 1) из газовой фазы, так и путем ее испарении (K < 1) из расплава. Переход летучего компонента через поверхность раздела расплав–газ будет отсутствовать только в том случае, когда концентрация растворенной в расплаве летучей примеси находится в равновесии с ее концентрацией в газовой фазе. Изменение состава расплава за счет сегрегации вызывает обмен летучим компонентом между расплавом и газом. Процесс межфазного обмена, который в конце концов приводит концентрации примеси в расплаве и газе к равновесным значениям, прекратится только тогда, когда прекратится изменение состава расплава.

Рис. 6. Схема подпитки кристалла с помощью испарения летучей примеси с K < 1 из расплава: 1 —тигель; 2 — выращиваемый кристалл; 3 — расплав; 4 — нагреватель.

Если в системе имеется летучий компонент, то при наличии свободных поверхностей расплава обязательно происходит обмен летучим компонентом между расплавом и газом и равновесная подпитка расплава этим компонентом.

При работе с летучими компонентами использование равновесной газовой подпитки можно вести по двум схемам. В первой из них стенки установки для выращивания кристалла специально не подогреваются, и их температура, как правило, близка к комнатной. В стационарных условиях вся примесь должна испариться из расплава и осесть на холодных стенках системы. При выращивании же легированных кристаллов все происходит по-другому. Равновесное испарение примеси компенсируется механической подачей в расплав летучего компонента. Например, простейший вариант такого процесса реализуется при равенстве оттесняемого на фронте кристаллизации в расплав в единицу времени количества примеси и количества примеси, испаряющейся за это же время со свободной поверхности расплава (рис. 6). Необходимая для этого процесса скорость роста кристалла находится из уравнения баланса примеси в расплаве.

По второй схеме выращивание кристаллов ведут в установке со специально подогреваемыми стенками рабочей камеры. В этом случае система представляет собой замкнутый, предварительно вакуумированный объем с определенным температурным полем (рис. 7). В зоне пониженных температур помещают избыточное количество летучего компонента (источник). Температуру основной части системы, в которой происходит рост легированного кристалла, выбирают промежуточной между температурой источника и температурой расплава. Процесс кристаллизации ведут так, чтобы изменение состава расплава, вызванное сегрегационными явлениями, компенсировалось поглощением примеси из газовой фазы расплавом (должно установиться равновесное распределение примеси в системе расплав–подпитывающая газовая фаза). Для получения однородного по составу кристалла необходимо, чтобы равновесие в системе устанавливалось со скоростью большей, чем скорость сегрегационных изменений состава жидкой фазы. Это возможно только при очень малых скоростях роста кристалла, значительно меньших, чем обычно используют на практике. Поэтому этот метод при выращивании однородных объемных кристаллов применяют сравнительно редко (обычно для выращивания концентрированных твердых растворов тугоплавких материалов и диссоциирующих соединений).

Рис. 7. Схема механической подпитки расплава паровой фазой: 1 — выращиваемый кристалл; 2 — расплав; 3 — основной нагреватель; 4 — сосуд с летучей примесью; 5 — вспомогательный нагреватель, регулирующий давление пара, скорость его подачи к поверхности расплава; 6 — конденсат летучей примеси; 7 —термопара.

3.4 Изменение условий выращивания

Выравнивание состава выращиваемого кристалла с помощью программного изменения условий роста можно построить исходя из двух принципов.

Процессы, основанные на первом принципе, сводятся к программному изменению скорости вытягивания и вращения кристалла. Эта методика получила достаточно широкое распространение и имеет много модификаций. Суть методов, основанных на этом принципе, сводится к следующему. Если легирование кристалла проводится нелетучей примесью с K < 1, то по мере вытягивания монокристалла концентрация примеси в расплаве непрерывно увеличивается и для получения равномерно легированного кристалла режим выращивания должен быть построен так, чтобы по мере роста кристалла коэффициент разделения примеси непрерывно уменьшался. Управлять изменением K от Kmax до Kmin можно изменением скорости выращивания кристалла V, частоты его вращения ω, а также выбором кристаллографической ориентации затравки и, соответственно, направлением выращивания.

Согласно второму принципу параметры системы меняются так, что состав расплава в течение процесса выращивания кристалла остается постоянным. Этого можно добиться в случае, когда подпитка не производится и легирование кристалла осуществляется нелетучей примесью, изменением объема расплава в ходе процесса, то есть либо изменением длины расплавленной зоны, либо применяя слитки переменного сечения.

Однако вследствие сложности практического осуществления эти методы выравнивания состава на практике не применяются.

В заключении следует отметить, что с точки зрения получения высоко совершенных кристаллов, подпиточные методы вследствие стационарности условий роста кристаллов обладают существенными преимуществами перед методами программного изменения условий роста, при использовании которых, в принципе, трудно ожидать получения совершенных кристаллов. Это, в свою очередь, и обусловливает более широкое применение подпиточных методов для получения однородных кристаллов.

4. Растворимость примесей

Для ряда практических применений (создание туннельных диодов, светодиодов и других полупроводниковых приборов) необходимо получать сильно легированные полупроводники. Поэтому представляется важным знание предельной растворимости CSmax примесей в материале (в твердой фазе). Под этим термином подразумевается концентрация примеси в насыщенном твердом растворе, образованном основным веществом и данной примесью. Если концентрация примеси в полупроводнике меньше CSmax, то примесь распределяется в кристаллической решетке моноатомно; если превышает CSmax, то, как показывают исследования, в выращиваемом кристалле появляются структурные нарушения, например, макроскопические частицы инородной фазы, что сопровождается резким ростом, в первую очередь, плотности дислокаций. При легировании кристаллов большими концентрациями примесей важно иметь запас в растворимости, чтобы обезопасить кристалл от появления подобных структурных нарушений.

Рис.8. Зависимость Ci и CS от CL.

Кроме того, когда речь идет о сильном легировании полупроводников электрически активной примесью (легирующие примеси), то надо иметь в виду, что, например, в элементарных полупроводниках довольно часто наблюдается несоответствие между концентрациями носителей заряда и электрически активной примеси n(p) < CSmax. Поэтому было введено также понятие предельной растворимости электрически активной примеси.

Характеристики

Тип файла
Документ
Размер
1,21 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6749
Авторов
на СтудИзбе
283
Средний доход
с одного платного файла
Обучение Подробнее