125052 (717523), страница 4
Текст из файла (страница 4)
До фракционирования углеводородные газы направляются вначале в блоки очистки от сероводорода и осушки.
На нефте- и газоперерабатывающих заводах наибольшее распространение получили следующие физические процессы разделения углеводородных газов на индивидуальные или узкие технические фракции: конденсация, компрессия, ректификация и абсорбция. На ГФУ эти процессы комбинируются в различных сочетаниях.
Компрессия и конденсация — процессы сжатия газа компрессорами и охлаждения его в холодильниках с образованием двухфазной системы газа и жидкости. С повышением давления и понижением температуры выход жидкой фазы возрастает, причем сконденсировавшиеся углеводороды облегчают переход легких компонентов в жидкое состояние, растворяя их. Обычно применяют многоступенчатые (2, 3 и более) системы компрессии и охлаждения, используя в качестве хладоагентов воду, воздух, испаряющиеся аммиак, пропан или этан. Разделение сжатых и охлажденных газов осуществляют в газосепараторах, откуда конденсат и газ направляют на дальнейшее фракционирование методами ректификации или абсорбции.
Абсорбция - процесс разделения газовых смесей, основанный на избирательном поглощении отдельных компонентов сырья жидким поглотителем - абсорбентом. Растворимость углеводородов в абсорбенте возрастает с повышением давления, ростом молекулярной массы и понижением температуры процесса ниже критической температуры абсорбируемого газа.
Абсорбция - обратимый процесс, и на этом основано выделение поглощенного газа из жидкости - десорбция. Сочетание абсорбции с десорбцией позволяет многократно применять поглотитель и выделять из него поглощенный компонент. Для десорбции благоприятны условия, противоположные тем, при которых проводят абсорбцию, то есть повышенная температура и низкое давление. Наилучшим абсорбентом для углеводородных газов являются близкие им по строению и молекулярной массе жидкие углеводороды, например, бензиновая или керосиновая фракции.
Ректификация является завершающей стадией разделения углеводородных газов. Особенность ректификации сжиженных газов, по сравнению с ректификацией нефтяных фракций, - необходимость разделения очень близких по температуре кипения компонентов или фракций сырья при высокой четкости фракционирования. Так, разница между температурами кипения этана и этилена составляет 15°С. Наиболее трудно разделить бутан-бутиленовую фракцию: температура кипения изобутана при нормальном давлении составляет 11,7 °С, изобутилена - 6,9, бутена - 1 - 6,29, а н-бутана - 0,5 °С.
Ректификацию сжиженных газов приходится проводить при повышенных давлениях в колоннах, поскольку для создания жидкостного орошения необходимо сконденсировать верхние продукты колонн в обычных воздушных и водяных холодильниках, не прибегая к искусственному холоду.
Конкретный выбор схемы (последовательности) разделения, температуры, давления и числа тарелок в колоннах определяется составом исходной газовой смеси, требуемой чистотой и заданным ассортиментом получаемых продуктов.
На НПЗ для разделения нефтезаводских газов применяются преимущественно 2 типа газофракционирующих установок, в каждый из которых входят блоки компрессии и конденсации: ректификационный - сокращенно ГФУ, и абсорбционно-ректификационный АГФУ. На рис.11 и 12 приведены принципиальные схемы ГФУ для разделения предельных газов и АГФУ для фракционирования жирного газа и стабилизации бензина каталитического крекинга (на схемах не показаны блоки сероочистки, осушки, компрессии и конденсации). В блоке ректификации ГФУ (рис.11) из углеводородного газового сырья сначала в деэтанизаторе 1 извлекают сухой газ, состоящий из метана и этана. На верху колонны 1 поддерживают низкую температуру подачей орошения, охлаждаемого в аммиачном конденсаторе-холодильнике. Кубовый остаток деэтанизатора поступает в пропановую колонну 2, где разделяется на пропановую фракцию, выводимую с верха этой колонны, и смесь углеводородов С4 и выше, направляемую в бутановую колонну 3. Ректификатом этой колонны является смесь бутанов, которая в изобутановой колонне 4 разделяется на изобутановую и бутановую фракции. Кубовый продукт колонны 3 подается далее в пентановую колонну 5, где в виде верхнего ректификата выводится смесь пентанов, которая в изопентановой колонне 5 разделяется на н-пентан и изопентан. Нижний продукт колонны 5 - фракция С6 и выше - выводится с установки.
Для деэтанизации газов каталитического крекинга на установках АГФУ (рис.12) используется фракционирующий абсорбер 1. Он представляет собой комбинированную колонну абсорбер-десорбер. В верхней части фракционирующего абсорбера происходит абсорбция, то есть поглощение из газов целевых компонентов (С3 и выше), а в нижней - частичная регенерация абсорбента за счет подводимого тепла. В качестве основного абсорбента на АГФУ используется нестабильный бензин каталитического крекинга. Для доабсорбции унесенных сухим газом бензиновых фракций в верхнюю часть фракционирующего абсорбера подается стабилизированный (в колонне 4) бензин. Абсорбер оборудован системой циркуляционных орошений для съема тепла абсорбции (на рис.12 не показана). Тепло в низ абсорбера подается с помощью «горячей струи». С верха фракционирующего абсорбера 1 выводится сухой газ (С1-С2), а с низа вместе с тощим абсорбентом выводятся углеводороды С3 и выше. Деэтанизированный бензин, насыщенный углеводородами С3 и выше, после подогрева в теплообменнике подается в стабилизационную колонну 2, нижним продуктом которого является стабильный бензин, а верхним - головка стабилизации. Из нее (иногда после сероочистки) в пропановой колонне 3 выделяют пропан-пропиленовую фракцию. Кубовый продукт пропановой колонны разделяется в бутановой колонне 4 на бутан-бутиленовую фракцию и остаток (С5 и выше), который объединяется со стабильным бензином.
Рис. 12. Принципиальная схема абсорбционно-газофракционирующей установки (АГФУ): I - фракционирующий абсорбер; 2 - стабилизационная колонна; 3 - пропановая колонна; 4 - бутановая колонна; I - очищенный жирный газ; II - нестабильный бензин; III - сухой газ; IV - пропан-пропиленовая фракция; V -бутан-бутиленовая фракция; VI - стабильный бензин
Рис. 11. Принципиальная схема газофракционирующей установки (ГФУ): 1 - деэтанизатор; 2 - пропановая колонна; 3 - бутановая колонна; 4 - изобутановая колонна; 5 - пентановая колонна; 6 - изопентановая колонна; I - сырье; II - сухой газ; III - пропановая фракция; IV - изобутановая фракция; V - бутановая фракция; VI - изопентановая фракция; VII - пентановая фракция; VIII - фракция С6 и выше
Рис.8. Вакуумная перекрестноточная насадочная колонна для четкого фракционирования мазута на масляные дистилляты (авторы разработки К.Ф.Богатых и С.К.Чуракова)
Рис. 9. Основные способы конденсации паров, применяемые в конденсационно-вакуумсоздающих системах вакуумных колонн: ВЦО - верхним циркуляционным орошением; ОО - острым орошением; ПКХ - в поверхностных конденсаторах-холодильниках; БКС - в барометрических конденсаторах смешения; ПЭК - в промежуточных конденсаторах пароэжекторного насоса; Е - емкость-сепаратор; КБ - колодец барометрический
Рис. 5. Схемы одноколонной (а) и двухколонной (б) перегонки мазута по масляному варианту: I - мазут; II, Ш и IV - соответственно маловязкий, средневязкий и высоковязкий дистилляты; V - гудрон; VI - водяной пар; VII - неконденсированные газы и водяной пар; VIII - легкий вакуумный газойль
Рис. 3. Принципиальная схема блока стабилизации и вторичной перегонки бензина установки ЭЛОУ —АВТ-6: 1 - колонна стабилизации; 2-5 - колонны вторичной перегонки; 1- нестабильный бензин; II - фракция С5-62°С; III - фракция 65-105°С; V - фракция 62-85°С; V - фракция 85-105°С; VI - фракция 105-140°С, VII-фракция 140-180°С; VIII - сжиженная фракция С2-С4; IX - сухой газ (С1-С2) X - водяной пар
Рис. 2. Принципиальная схема блока вакуумной перегонки мазута установки ЭЛОУ – АВТ – 6: 1 – вакуумная колонна; 2 – вакуумная печь; 3 – пароэжекторный вакуумный насос; I – мазут из АТ; II – легкий вакуумный газойль; III – вакуумный газойль; IV – затемненная фракция; V – гудрон; VI – водяной пар; VII – газы разложения; VIII – конденсат (вода и нефтепродукт)
В таблице 2 и 3 приведен технологический режим ректификационных колонн установок ГФУ и АГФУ.
Известно, что затраты при ректификации определяются преимущественно флегмовым числом и числом тарелок в колонне. Для близкокипящих компонентов с малой относительной летучестью эти параметры особенно велики. Поэтому из общих капитальных и эксплуатационных затрат на газофракционирование существенная (около половины) часть приходится на разделение фракций iC4-нC4 и iC5-hC5. В этой связи на НПЗ часто ограничиваются фракционированием предельных газов без разделения фракций С4 и выше.
Таблица 2 - Технологический режим колонн ГФУ
Ректификационная колонна7 | Давление, МПа | Температура, 0С | |
верха | низа | ||
Деэтанизатор (1) Пропановая (2) Бутановая (3) Изобутановая (4) Пентановая (5) Изопнтановая (6) | 2,6-2,8 1,2-1,4 2,0-2,2 1,0-1,2 0,3-0,4 0,35-0,45 | 25-30 62-68 58-65 65-70 75-80 78-85 | 110-115 145-155 110-115 80-85 120-125 95-100 |
Таблица 3 - Технологический режим колонн АГФУ
Параметр | Ректификационные колонны | |||
1 | 2 | 3 | 4 | |
Давление, МпаТемпература, 0С: верха питания низа Число тарелок Флегмовое число | 1,35 35 40 130 60 - | 0,93 78 150 218 60 2 | 1,73 44 86 107 60 3 | 0,59 48 61 106 60 3 |
-
Заключение
Технологические установки перегонки нефти предназначены для разделения нефти на фракции и последующей переработки или использования их как компоненты товарных нефтепродуктов. Они составляют основу всех НПЗ. На них вырабатываются практически все компоненты моторных топлив, смазочных масел, сырье для вторичных процессов и для нефтехимических производств. От их работы зависят ассортимент и качество получаемых компонентов и технико-экономические показатели последующих процессов переработки нефтяного сырья.
Список использованных источников
-
Ахметов С.А. Технология глубокой переработки нефти и газа. Уфа: «ГИЛЕМ», 2002. – 671с.;
-
Справочник нефтепереработчика. Под редакцией Ластовкина Г. А., Радченко Е.Д. Л.: Химия, 1986;
-
Эрих В.Н., Расина М.Г., Рудин М.Т. Химия и технология нефти и газа. Л.: Химия, 1985.
1 В зависимости от типа перегоняемой нефти и структуры выпуска товарных нефтепродуктов на разных НПЗ получают фракции, несколько отличающиеся по температурным пределам выкипания.
2 Тип тарелок – клапанная перекрестно-прямоточная
3 На ЭЛОУ – АВТ ОАО «Орскнефтеоргсинтез»
4 Тип тарелок: в концентрационной части - клапанная перекрестно-прямоточная, в отгонной - ситчатая с отбойниками.
5 Тип тарелок - клапанные перекрестно-прямоточные.
6 Разработчики - профессор Уфимского государственного нефтяного технического университета К.Ф.Богатых с сотрудниками.
7 Общее число тарелок – от 390 до 720