124425 (717357), страница 2

Файл №717357 124425 (Твердые материалы и их соединения) 2 страница124425 (717357) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Стуруктура твердого сплава WC-Co может быть охарактиризована средним линейным размером зерна lWC и средней толщиной интерметаллических слоев кобальта pCo; это также называется длиной свободного пробега или средним растоянием (секция 7.3.4). Применимо следующие равенство:

(1)

Структурные величины и вязкость разрушения K1С твердых сплавов WC-Cо (в пределах от 7 до 20 MPa*m1/2) и энергия области разрыва G1С, связаны следующим выражением:

(2)

Эта величина была выведена эмпирически. Принимая во внимание [11], в заключении можно увидеть, что увеличения энергии области разрыва, поскольку соотношение объема связки и WC, размер зерна увеличивается. Это имеет смысл, потому что на энергию сдвига повлияют значительно работа пласичности, в связки. Твердость зависит от того же самого параметра P2Со/1WC и выходит обратная зависимость [16].

(3)

Это означает, это в любой данной составной твердости системы и вязкости разрушения может только быть оптимизировано за счет друг друга (рис. 17-10).

Изгибающееся сопротивление разрыву твердых сплавов связано с процессом зарождения трещин и распространения. В соответствии с [17], это следует выражение:

(4)

где материальный постоянный m. – параметр Вейбула (секция 7.3), ( lWC) - зернистость - зависимый предел прочности WC и g(fwc) описывает локальное увеличение в напряжений в зерне WC. Градус скелетного формирования (смежность) c, твердой материальной фазы (секция 7.3.4) может быть грубо получена, если ρCo < p*Co и fwc >fCo то

(5)

В идентичной зернистости WC, кроме в очень высоком содержании кобальта (горизонтальные линии константы WC зернистость lWC на рисунке 17-11), изгибающееся сопротивление разрыву увеличивается с увеличивающимся содержанием кобальта. J.Gurland показал, что некоторая зернистость lwc, существует для каждого содержания металла-связки, в котором изгибающееся сопротивление разрыву, достигает максимума. Критическая величина p* толщины слоя металла-связки - p*Co + 0.4 μm для кобальта (линии постоянного содержания кобальта fCo ниже 45 ° на рисунке 17-11). В "пластичной зоне" (pCo > p*Co), изгибающееся сопротивление разрыву увеличивается с увеличением дисперсии фазы WC. Это может быть благодаря обоим дисперсионному твердению металла-связки или к увеличению в силе WC зерна с уменьшающейся зернистостью lwc. (p2Co/lwc) уменьшается (см. уравнения (1) и (2)) и твердость увеличивается, однако, уменьшается вязкость разрушения твердого сплава. Если, наконец, нижний предел критической толщины слоя p*Co достигнут (потому что WC зернистость стала меньшей), тонкие слои металла-связки больше не могут стабилизировать трещину пластической деформацией (область хрупкого разрушения).

Соотношение границ зерна WC-WC на полной поверхности WC фаз называется смежность c. Это быстро стало главными слабыми точками на зарождении трещин;так как это увеличение, уменьшает сопротивления разрыву на изгиб. Это означает, это в области хрупкого разрушения, сопротивление разрыву на изгиб и вязкость разрушения изменяется подобные тем же образом. Только, когда эти предварительные условия выполнены, то изгибающееся сопротивление разрыву может быть названо "вязкостью", как и часто названо в изданной литературной и коммерческой практике.

Дополнительные факторы (дефекты) типа пор, вложений, бороздок, и неоднородного распространения структурных компонентов, также влияют на прочность твердых сплавов и вызывают широкие вариации в свойствах. Влияние этих факторов особенно, поведение усталости, в течение динамической нагрузки (секция 7.3). Понижение числа циклов напряжения, чтобы раздробить N, связано с изменением в статическом сопротивлении разрыву изгиба следующим соотношением:

(6)

Твердые сплавы имеют невыгодную величину , благодаря высоким соотношениям хрупких фракций в течение распространения усталостной трещины.

Зависимости, обсужденные выше, применимы к комнатной температуре и могут даже полностью изменяться с увеличением температуры. Например, в температурах > 8000 C, самое лучшее зерно твердого сплава WC имеет более низкую ползучепрочность чем твердый сплав с грубым зерном WC (рис. 17-11). Это - несмотря на их высокую твердостьпри комнатной температуре. Вышеупомянутый соотношений не могут применяться безоговорочно, если возникают дополнительные или новые фазы , как имеет место с твердыми сплавами TiC (TaC)-WC-Co. Прибавляя TiC, твердость увеличена за счет изгибающегося сопротивления разрыву, благодаря к связанному упрочнению твердого раствора. Это иногда также увеличивает теплопрочность стержневой смеси WC- TiC (TaC), твердый раствор по сравнению с WC и прежде всего с TiC (рис. 17-12 и 17-4). Это особенно уместно в более высокотемпературных режимах резанья, произведенных в течение обработки материалов, производящих длинной станочной стружке. Это дополнено изменениями в трении и диффузии между твердым сплавом и материалом, для обработки на станке. Прибавления TaC также отщеплять "формирование ребра трещины " на режущей кромке твердого сплава, это происходит благодаря повторенным температурным изменениям, особенно в течение фрезерования.

Твердые сплавы, которые главным образом используются для более высоких скоростей резания ( основанные на TiC, TiN, TiCN или (Ti, Мо) (C, N) как твердые материалы) имеет более низкую теплопрочность стержневой смеси и ползучепрочность, чем эквивалент основаных на WC твердых сплавах [11], но показывает что приведенный износ в течение механической обработки, из-за их увеличенной химической стойкости против стали [18], и подобен покрытому твердому сплаву (секция 2.5).

2.3 Производство твердых сплавов

Следующая секция описывает шаги процесса производства коммерчески общих твердых сплавов основанного на WC-Cо и TiC-TaC-WC-Co. Есть многочисленные различия в деталях; в зависимости от опыта производителя и сложности его оборудования; иногда, различные производители изменяются по их мнениям о пригодности на одном или другом варианте. Процессы, описанные здесь, применяются, как правило, также для производства других типов твердых сплавов (секция 2.6).

Карбид вольфрама произведен цементацией порошка W (секция 2.6.3) после смешивания с углеродом под водородом в температурах 1400 к 18000 C (до 20000 C для очень грубых карбидов). Крупность частиц и их распространение в продукте реакции - значительно под влиянием условий эксплуатации (чистота водорода, температура). Выгодно использовать порошок W с эквивалентом крупности частиц к желательному WC размеру , так как при розмоле часто производит нерегулярные структуры, если зернистость твердого сплава управляется таким образом. Содержание углерода WC должно остаться в регионе 6.00 к 6.20 мас - % (секция 2.1). До настоящего времени, WO3 и углерод не были преобразованы прямо к WC.

Остающиеся карбиды получены, взаимодействуем металлических оксидов с углеродом, под вакуумом или водородом; TiС обработан в температурах > 20000 C, TaC > 16000 C (секция 2.6.3). Часто, смешанный карбид, TiС -WC (соотношения веса 50:50) произведен вместо TiС, потому что это может быть достигнуто в температурах реакции, столь же низких как 17500 C. Нитриды углерода получены таким же образом, что и TiС, но в более низких температурах, понижают уровни добавок С и используют азотной атмосферы.

Смешанные твердые сплавы составлены из индивидуальных карбидов или предварительно образованных смешанных карбидов,порошка кобальта с очищенными зернами, и прессующего средства (керосин, поливиниловый спирт, полиэтиленгликоль), который будет требоваться позже. Основание соединения - органическая жидкость (этиловый спирт или ацетон, если это впоследствии высушено распылением). Измельчение происходит в истирателе, молотковой мельнице, или вращательной шаровой мельнице. Цель этого процесса состоит в том, чтобы распределить кобальт настолько равномерно насколько возможно по материальным точкам карбида. Если распространение неравномерно, это не может быть полностью реверсировано в течение спекания, хотя кобальт может вступать в пространства между частицами карбида. Дробление твердого материала важно в измельчении, чтобы разбить любой агломерат, который происходит в течение синтеза. После того, как это, смесь, которая дробится как жидкий раствор в жидкости измельчения, высушено в распылительной сушилке, используя инертный газ (секция 3.5). Это приводит к грануляции со вторичной крупностью частиц 0.06 к 0.3 мм, которая освобождает течение и может с готовностью быть уплотнено.

Завися до некоторой степени от размера и формы, указаные вкладыши инструмента для поворота, и другие компоненты запрессовываются автоматическими прессами (секция 5.2.1) в матрицах на давлениях от 200 до 400 MPa. Проект матрицы принимает во внимание сжатие в течение спекания (от 15 до 20 % линейно); этим процессом возможно произвести от 20 до 60 прессовок в минуту (прямым формованием). Автоматическое управление технологическим процессом позволяет современным прессам управлять поведением пресса так, чтобы плотность, а следовательно и сжатие остаются постоянным. Процесс спекания начинается с перемещением прессующего средства (депарафинизацию), используя водород или вакуум, увеличивая температуру к 6000 C. После того, как окончательно происходит спекание при 1350 к 15000 C (в зависимости от композиции твердого сплава), обычно под вакуумом, но также и использованием водорода.

Прессовки твердых сплавов обычно спекаются в вакуумных печах периодического действия, держащих от 500 до 1000 кг материала. Рабочие условия этого типа печи могут быть с готовностью установлены на тип твердого сплава, который нужно спечь.

Запас спеченных металлокерамических изделий вводится в дымовых трубах графитовых вставок или ящиках (чтобы максимизировать использование пространства в пределах печи). Содержание углерода этих стыков и изоляции печи гарантирует, что газ в печи не обезуглероживает твердый сплав. В современных печах с объединенным устройством депарафинизации, температура и время также как и газовая атмосфера, заданная для соответствующего шага, установлены автоматически. Непрерывные конвейерные печи с вентильной системой между внешним воздухом, депарафинизированая камера, и площадь спекания могут использоваться для большого серийного производства единого материала. Большие части или прессовки, содержащие большие количества смазочного материала (например штампуемые в горячем виде преграды, секции 5.3.3) производятся в специальных печах депарафинизации с соответствующими длинными временем производственного цикла.

" Косвенное формирование " используется, чтобы произвести прессовки, которые не могут быть уплотнены в их конечную форму. Этот процесс начинается от спрессованной заготовки. После изъятия прессующего устройства в температурах до 6000 C или после предварительного спекания в - до 10000 C, заготовка должна иметь достаточную силу для передаче ей ее окончательной формы вращением, размолом, или сверлением. Обработанная на станке прессовка тогда окончательно спеченная. Очень большие прессовки прессуются холодно - изостатически (секция 5.2.2). В этом случае, прессовки очень тверды даже без использования прессующих устройств, что делает возможным работать с ними немедленно. Ранее горячее прессование широко использовалось для производства твердых сплавов, с низким в содержанием металла соединительной детали и с низкой пористостью. Этот процесс теперь почти полностью был заменен ГИП (горячий изостатический нажим) (секция 5.3.1). Разработка этого процесса сделала возможным произвести твердые сплавы для фасонных резцов, поддаваемых высокой динамической нагрузке (секция 2.4). В течение (изостатического) спекания под давлением (ГИП-спекание), прессовка сначала спекалась под вакуумом. В то время как материал держался в температуре спекания то есть с существующей жидкой фазой, выполнялось горячее - изостатическое прессование. Это происходит прежде, чем закрепленная решетка карбида формировалась. Из-за этого, более низкое давление аргона (< 10 MPa) удовлетворяет, чтобы достичь адекватного уплотнения [19].

Спеченный твердый сплав может только быть сформирован, используя электроэрозионный или сверхтвердые инструменты, также размолом (диски размола из карбида кремния или, даже лучше, алмаза). Индифицируемые вкладыши - внахлестку на верхних и нижних поверхностях, использующих карбид бора и в зависимости от требований допуска, основание на окружности (размол контура). На частях, которые подвержены динамической нагрузке, существенно переместить внешний слой размолом. Это особенно важно на частях, которые обработались ГИП-ом. Это потому что поверхности этих частей содержат большое соотношение дефектов, что может инициировать разрушение. Они созданы испарением или реакциями с газовой атмосферой (примеси в защитном газе).

Прочность на изгиб и твердость твердых сплавов проверены в соответствии с процедурами, описанными в главе 7. Из-за ее низкой величины (< 1 %), пористость определена против согласованных стандартов на секциях с поперечным направлением. Магнитные измерения используются на содержащим кобальт твердых сплавов для более быстрой и оценки без разрушения спеченного продукта. Измерение коэрцитивности используется, чтобы определить толщину слоев кобальта P Со между твердыми частицами материала. Если композиция известна, то возможно использовать это показание, чтобы вычислить среднюю крупность частиц твердой материальной фазы 1WC. Магнитное насыщение пропорционально к количеству фазы металла соединительной детали. Если величина падает ниже математического ожидания, это указывает на присутствие нежелательной ломкой фазы W3Co3C (секция 2.1); которая является немагнитной.

2.4 Применение непокрытых твердых сплавов

Раннее, твердосплавные концы, использованные как режущие инструменты, всегда паялись на стальные несущие элементы. Медные припои обычно использовались, вместе с содержащими никель реакционными припоями , которые имели лучшее температурное сопротивление. В настоящее время, вкладыши из твердых сплавов главным образом используются в форме индексируемых вкладышей , установленных механически на резцедержатель (рис. 17-13). Исключение к этому - малогабаритные вкладыши, например концы для дрелей или буров - расширителей. Благодаря ихней симметрической форме (окружность, треугольная, квадратный, ромбический и т.д.), только режущая кромка потерпела неудачу, вкладыши могут быть повернуты на 180 так, чтобы они могли использоваться, пока все грани не были изношены. Нет надобности на восстановление резцедержателя, пользователя выигрывает от наличия короткого времени изменения инструмента; также возможно заменить вкладыши автоматически от магазина в резцедержателе. Другое преимущество использования индексированных вкладышей - отсутствие любых напряжений спаивания, которые всегда воздействуют стойкость инструмента негативно. В зависимости от класса допуска, изготовители гарантируют вариации размера вкладыша ниже от 0.13 до 0.013 мм.

Режущая поверхность вкладыша имеет сложный рельеф. Это оптимизировано моделированием компьютера, и служит, чтобы оптимизировать обработку на станке и обломку чипа в течение резания. Это также увеличивает произврдительность и срок службы инструмента. Нет необходимости выполнять последовательный размол.

Характеристики

Тип файла
Документ
Размер
331,09 Kb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6513
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее