124003 (717305), страница 2

Файл №717305 124003 (Развитие теоретических принципов технической диагностики) 2 страница124003 (717305) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Работоспособность и качество системы диагностирования оцениваются незамедлительностью выдачи информации о местонахождении, типе и причине неисправности при проведении мониторинга технической системы и окружающей среды. Таким образом, во-первых, система диагностирования должна обладать высоким быстродействием.

Во-вторых, отысканию местонахождения дефекта способствует правильность организации поисков дефектов, которая связанна с коэффициентом глубины поиска.

В-третьих, система отыскания неисправности (дефекта) должна располагать методологией правильного распознавания и классификацией признаков дефектов любой кратности. Распознавание и классификация неисправностей определяет их тип и причину возникновения.

Решению второй проблемы посвящены исследования [2, 4, 5], первой проблеме из приводимого библиографического списка – работы [3, 6, 8], а третьей – лишь [3]. В целом, проблема быстродействия диагностических систем может быть успешно решена распараллеливанием потоков обработки диагностической информации путем применения вычислительных систем с массовым параллелизмом – нейронных сетей.

Наиболее дешевым и простым способом повышения быстродействия диагностических систем является введение в их контрольно-измерительный комплекс вычислительных систем с архитектурой SISD по классификатору Б.М.Когана, но с использованием в них программно-алгоритмического обеспечения, позволяющего эмулировать виртуальную нейронную сеть. Другим подходом является аппаратная реализация в контрольно-измерительном комплексе реального нейронного компьютера на основе вычислительной системы с архитектурой MIMD.

В диагностике технических систем нередко проявляются дефекты, при которых связь между признаками и причинами неисправностей носит неоднозначный характер. Простые двузначные утверждения типа “исправный – 1” / “неисправный – 0” недостаточны, поскольку четкие правила поиска неисправностей в системе основываются на взаимнооднозначном соответствии между причиной и признаками неисправностей, то есть они жестко детерминированы в правилах. Современные диагностические системы должны распознавать опасные условия функционирования, причины и тип возникшей неисправности. Помимо этого ожидается также информация об оценке оставшегося срока службы всей технической системы или ее составной части.

Таким образом, выходные параметры диагностической системы должны определять с одной стороны причину и тип дефекта (неисправности), с другой стороны - состояние объекта диагностирования, его соответствие оперативно-функциональному назначению.

Аналитические модели диагностики отказов определяют, выделяют и классифицируют отказы в компонентах системы. Рисунок 1 демонстрирует структуру аналитической модели диагностики отказов, состоящую из двух основных частей.

Рисунок 1. Концептуальная структура аналитической модели диагностики отказов

Первая часть модели представляет собой определитель разности, который обрабатывает входы и выходы системы в соответствии с определенным алгоритмом. На его выходе формируются сигналы разности. Разность должна быть отличной от нуля в случае отказа и равна нулю, если отказа нет.

Второй частью модели является классификатор отказов, в котором разности оцениваются на наличие в системе отказа и по определенному правилу принимается решение о выходе системы из строя. Процесс принятия решения может состоять из простой проверки превышения полученной разности максимально допустимого значения, или же использовать более сложные методы статистических оценок. [6]

Основной проблемой разработки аналитических моделей диагностики отказов является определение разности. Большинство определителей разности основаны на моделях линейных систем. Для нелинейных систем основным подходом является их линеаризация. Однако, для систем с высокой степенью нелинейности и большим количеством нелинейных операций, такая линеаризация не дает удовлетворительных результатов.

Единственным решением данной проблемы является использование большого количества линейных систем, что не очень практично при создании моделей, работающих в реальном времени. Большинство известных линеаризацией применимы лишь для ограниченного класса нелинейностей. К тому же, процесс создания моделей очень сложен и точность получаемых результатов трудно проверить.

Зная возможности нейронных сетей моделировать сложные системы обладая небольшим количеством информации, можно сделать вывод о том, что проблемы такого характера можно решить полностью, если использовать в аналитических моделях нейронные сети.

Следующая ступень обработки - классификация разностей и определение возможного отказа. Главной задачей здесь является правильное отделение нормальных разностей от разностей, содержащих данные об отказе. В присутствии в системе шумов и неопределенностей эта задача может оказаться трудной. Для выделения отказа разность должна быть обработана таким образом, чтобы стало понятно, какой компонент системы вышел из строя. Обработка одного сигнала разности не представляет особой трудности, однако, вектор разностей усложняет процесс определения отказа. Основным подходом определения отказа является создание набора структурированных разностных сигналов. То есть, в этом случае, каждая разность является чувствительной к одной определенной группе отказов и нечувствительной ко всем остальным. Однако, создание такого набора разностей для нелинейных систем является сложной задачей. Даже для линейных систем отношения между отказами и разностями могут быть нелинейными для параметрических отказов.

Все это приводит к решению использовать нейронные сети для выделения отказов, так как нейронные сети могут быть натренированы определенным образом с целью получения соответствующей связи между входами и выходами.

Д. Баршдорф в работе пишет, что важным шагом в любом методе диагностики отказов является построение математической модели, дающей адекватную информацию о функционировании системы. Диагностирование неисправностей системы при помощи детерминистических методов распознавания дефектов эффективно при наличии математической модели ее функционирования. Эти модели в большинстве случаев можно анализировать лишь численными методами, что накладывает ограничение на их использование в реальном времени при поиске неисправностей и управлении технической системой. Почти все реальные процессы функционирования технических систем имеют нелинейное поведение, для них характерно возникновение нештатных ситуаций. В этих случаях обычно используют экспертов, то есть происходит вмешательство человека в процесс диагностирования и управления технической системой. Если детерминистические знания недоступны или математическое моделирование требует больших затрат расчетного времени, либо не обеспечивает требуемой точности, то могут быть использованы другие методы. Такими методами являются моделирование знаний оператора при помощи эвристических познаний и стратегий логического вывода, как например, это делается в экспертных системах на основе нечетких логик с реализацией их на базе аппаратных или программно-алгоритмических эмуляционных нейронных сетей. [1]

Нейронные сети оказались полезными как средство контроля механизмов. Например, нейронная сеть может быть обучена так, чтобы отличить звук, который издает машин при нормальной работе («ложная тревога») от того, который является предвестником неполадок.

Одним из наиболее важных преимуществ нейронных сетей является их способность представлять нелинейные преобразования, таким образом, нейронные сети способны формировать очень точную аппроксимацию для нелинейных функций любой продолжительности.

Нейронные сети являются альтернативным вариантом проектирования оценочных устройств. Важным свойством нейронных сетей является то, что они изучают динамику системы в процессе тренировки, состоящей из нескольких тренировочных циклов, с тренировочным данными, поступающими либо из предыдущего цикла, либо состоящей из реальных сигналов. После каждого цикла нейронная сеть узнает все больше и больше о динамике объекта. Одним из наиболее важных качеств нейронных сетей является их возможность изучать динамику поведения нелинейных систем автоматически, в случае, если архитектура нейронной сети содержит как минимум три слоя. [10]

Преимущества классификатора, построенного на основе нейросетей, перед традиционными оценочными методами заключается в таких факторах: независимость от шумов, самообучаемость, возможность параллельной обработки и т.д.

Обученная нейронная сеть, на основе мониторинга окружающих условий по радиационному фону, может с высокой степенью точности предсказать появление дефектов в полупроводниковых приборах и оценить степень их живучести, то есть своевременно вывести технический объект (робота) из зоны опасного воздействия радиации для его ремонта.



Заключение

Меньше чем за 40 лет в рамках дисциплины технической диагностики было решено много практических задач и достигнуто много существенных теоретических достижений. Но, несмотря на значительный прогресс в теории и практике автоматизации обнаружения основных дефектов машин и оборудования, оценка технического состояния промышленного оборудования на большинстве российских предприятий выполняется на основе субъективного метода оценки высококвалифицированными специалистами диагностами, обслуживающими объекты диагностирования на протяжении длительного времени и получивших опыт ориентирования во внешних признаках изменения технического состояния. Последние достижения науки предопределяют необходимость перехода от субъективных методов оценки состояния к объективным.

На данный момент перспективными направлениями развития методов и средств диагностики являются методы, основанные на нечеткой логике или нечетких множествах, экспертные системы и нейронные сети. Методы нечеткой логики позволяют значительно упростить описание модели объектов контроля и диагностики, а также являются более простыми для аппаратной реализации. Экспертные системы позволяют принимать решения о состоянии объекта контроля, если оценка состояния или поиска неисправности объекта контроля является трудно формализуемой задачей. Нейронные сети используют для идентификации объектов контроля, распознавания образов и прогнозирования состояния технической системы.



Литература

  1. Баршдорф Д. Нейронные сети и нечеткая логика. Новые концепции для технической диагностики неисправностей. //Приборы и системы управления. 1996. №2.

  2. Беляков В.В., Бушуева М.Е., Сагунов В.И. Многокритериальная оптимизация в задачах оценки подвижности, конкурентоспособности автотракторной техники и диагностики сложных технических систем. –Н.Новгород: НГТУ, 2001, 271 с.

  3. Биргер И.А. Техническая диагностика.-М.: Машиностроение, 1978.

  4. Бушуева М.Е. Методы и алгоритмы обеспечения контролепригодности сложных технических систем при кратных дефектах. Н.Новгород, 1997.

  5. Бушуева М.Е., Беляков В.В. Диагностика сложных технических систем / Разработка радиационно стойких полупроводниковых приборов для систем связи и прецизионных измерений с использованием шумового анализа //Труды 1-го ра-бочего совещания по проекту НАТО SfP–973799 Semiconductors –Н.Новгород: ТАЛАМ, 2001, с.63–98.

  6. Круглов В.В., Борисов В.В. Искусственные нейронные сети. Теория и практика. –М.: Горячая линия. Телеком, 2001, 382 с.

  7. Розенблатт Ф. Проблема внедрения самообучающихся информационных
    систем для оценки качества изготовления и
    функционирования машин и оборудования. Санкт-Петербург – 2004.

  8. Селлерс Ф. Методы обнаружения ошибок в работе ЭЦВМ, пер. с англ., М., 1972;

  9. Субботин С. А. Синтез вейвлет-нейро-нечетких моделей для диагностики деталей авиадвигателей. ОАО "Мотор-Сич", 2003

  10. Шахов А.В., Власов А.И., Кузнецов А.С., Поляков Ю.А. Нейрокомпьютеры: архитектура и реализация. //Приложение к журналу “Информационные технологии”. 2000. №9

  11. Silvio Simani, Cesare Fantuzzi and Ron. Ою Patton. Model-based Fault diagnosis in Dynamic Systems Using Identification Techniques. Spring, 2002

Характеристики

Тип файла
Документ
Размер
13,37 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6501
Авторов
на СтудИзбе
303
Средний доход
с одного платного файла
Обучение Подробнее