123118 (717108)

Файл №717108 123118 (Закономерности поведения биазеотропных смесей)123118 (717108)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Закономерности поведения биазеотропных смесей (систем)

Известно, что свыше 70% энергетических затрат в производствах основного органического и нефтехимического синтеза приходится на стадию выделения конечных продуктов требуемой степени чистоты. Такая высокая энергоемкость процессов разделения, и в первую очередь, процесса ректификации, обуславливает особо тщательный подход к синтезу их технологических схем. Основные ограничения, накладываемые фазовым равновесием на процесс ректификации, связаны с наличием азеотропов разного типа и порождаемых ими разделяющих многообразий (сепаратрис).

Разработанный на сегодня термодинамико-топологический анализ (ТТА) диаграмм парожидкостного равновесия ориентирован на моноазеотропию, когда на каждом элементе концентрационного симплекса находится не более одной азеотропной точки. Однако в сравнительно недавнее время были экспериментально исследованы девять бинарных систем с двумя бинарными азеотропами и одна – с тремя. Пять бинарных биазеотропных систем, образованных карбоновой кислотой и бутиловым эфиром одноименной кислоты, являются составляющими промышленной смеси, получающейся при этерификации бутанолом фракции кислот С57. По мере накопления массива данных по азеотропии, особенно в широком диапазоне температур (давлений), количество биазеотропных смесей будет увеличиваться. Как правило, компоненты бинарных биазеотропных смесей сами являются сильными азеотропными агентами и при добавлении к ним третьего компонента возможно образование не только одного, но и двух тройных азеотропов. Правило азеотропии, лежащее в основе классификации диаграмм парожидкостного равновесия, не накладывает никаких ограничений на возможность образования двух азеотропов на одном и том же элементе концентрационного симплекса. Исследованию биазеотропии в тройных системах с двумя тройными азеотропами посвящена статья (Комар.). В этой статье на основе правила азеотропии разработана классификация структур диаграмм парожидкостного равновесия (ПЖР) в тройных системах с учетом возможности образованиядвух азеотропов как в бинарных, так и в тройных системах. Было показано, что два тройных азеотропа могут возникать и в тройных системах с моноазеотропными составляющими. Таким образом, одним из направлений дальнейшего развития термодинамико-топологического анализа является расширение существующей классификации диаграмм парожидкостного равновесия трехкомпонентных систем, насчитывающей 26 типов, за счет включения трехкомпонентных систем с двумя тройными азеотропами.

В [д.Ч.] проведен синтез структур диаграмм парожидкостного равновесия трехкомпонентных систем с двумя тройными азеотропами при моноазеотропных бинарных составляющих, проведен анализ эволюции тройной биазеотропии при изменении давления, выявлены с помощью расчетного эксперимента две трехкомпонентные системы с двумя тройными азеотропами.

Обзор немногочисленных работ, в которых приводятся отдельные диаграммы трехкомпонентных систем с двумя тройными азеотропами, показал, что в настоящее время отсутствует системный подход к выявлению всего множества диаграмм подобных систем, не выявлены и не проанализированы особенности этих диаграмм.

В [д.Ч.] показано, что физико-химические закономерности преобразования фазовых диаграмм и эволюции тройных азеотропов являются научной основой для выявления конкретных трехкомпонентных систем с двумя тройными азеотропами. Отмечена определяющая роль точек Банкрофта различного рода.

Биазеотропия может возникать двояким образом: как через стадию образования внутреннего тангенциального азеотропа, так и с образованием граничных тангенциальных азеотропов. Схема возникновения тройного азеотропа через тройной граничный тангенциальный азеотроп (ТГТА), возникающий в точке бинарного азеотропа, приведена на рис. Эта схема весьма наглядна, если, используя математическую абстракцмю, выйти за границу концентрационного симплекса в область отрицательных концентраций. Чтобы образовался ТГТА (рис.), необходимо, чтобы при значезначении параметра, отличном от бифуркационного, в области отрицательных концентраций находилось либо седло (рис.), либо узел (рис.).

  • В [д.Ч.] проведен теоретический анализ векторного поля нод жидкость – пар, содержащего сложную особую точку седло-узел, соответствующую тройному внутреннему тангенциальному азеотропу. Этот анализ позволил установить все возможные варианты взаимного расположения единичных К-линий и обосновать нетривиальный ход дистилляционных линий в трехкомпонентных системах с двумя тройными азеотропами, не встречающийся в моноазеотроных системах. Были синтезированы диаграммы дистилляционных линий (64 структуры) и единичных К-линий (144 структуры) трехкомпонентных систем с двумя тройными азеотропами. на примере трехкомпонентных систем перфторбензол – бензол – третий компонент выявлены условия образования двух тройных азеотропов;

  • впервые выявлены две конкретные трехкомпонентные системы с двумя тройными азеотропами: перфторбензол – бензол – метилпропионат и перфторбензол – бензол – трет. амиловый спирт. При этом впервые обнаружен тройной отрицательный азеотроп и тройной внутренний тангенциальный азеотроп;

  • сформулированы достаточные условия образования тройного внутреннего тангенциального азеотропа. В [1] проведен синтез диаграмм трехкомпонентных систем с двумя тройными азеотропами. Уже на первых этапах синтеза были получены многочисленные диаграммы с нетривиальным ходом дистилляционных и единичных К-линий, ранее не встречавшимся в системах с одним тройным азеотропом. Предварительный анализ показал, что неординарность хода этих линий связана с мало изученным явлением тройной внутренней тангенциальной азеотропии (ТВТА). В связи с этим возникла необходимость исследования закономерностей формирования структур диаграмм ПЖР с ТВТА и эволюции таких диаграмм при изменении внешних параметров.

Был выявлен тип особой точки, соответствующей ТВТА. Известно, что общий баланс индексов особых точек векторного поля нод жидкость-пар для трехкомпонентной смеси на замкнутом многообразии, гомеоморфном сфере размерности 2, определяется уравнением:

i = 2. (1)

Возникновение сложной особой точки, соответствующей ТВТА, не должно нарушать алгебраической суммы индексов. Следовательно, при образовании внутренней сложной особой точки тип и количество всех простых особых точек остаются неизменными. Пусть на векторном поле нод возникает внутренняя сложная особая точка, индекс которой ic. Тогда общий баланс индексов будет представлен уравнением:

i + ic = 2. (2)

Из уравнений (1) и (2) следует, что ic = 0, это соответствует сложной особой точке, представляющей собой «седло-узел» различной кратности. Показано, что с наибольшей вероятностью на векторном поле равновесных нод реализуются двукратные «седло-узлы». После бифуркации рассматриваемая сложная особая точка либо исчезает, либо распадается на две простые особые точки – «седло» и «узел» (рис.1). Оба вида бифуркаций приводят к изменению топологической структуры диаграмм ПЖР.

Рис. 1. Бифуркация сложной особой точки типа двухкратный «седло-узел»

Синтез структур диаграмм трехкомпонентных систем с двумя тройными азеотропами проводился двумя независимыми методами с учетом установленных особенностей хода единичных К-линий. Один метод основан на алгоритме, ранее примененном Л.А. Серафимовым для синтеза диаграмм моноазеотропных систем. Основным его этапом является построение диаграмм единичных K-линий. В основе второго метода лежат закономерности преобразования диаграмм ПЖР при изменении внешних параметров. При этом учитывалось, что тройная биазеотропия может возникать либо в системе, содержащей один тройной азеотроп, через стадию образования тройного граничного тангенциального азеотропа (ТГТА) в соответствии с правилами сопряжения, либо в системе, не содержащей тройного азеотропа, через стадию образования тройного внутреннего тангенциального азеотропа. Использование двух методов дало одинаковый результат: получены 64 диаграммы дистилляционных линий, которым соответствуют 144 диаграммы единичных К-линий (табл. 1). По механизму возникновения тройной биазеотропии эти диаграммы были разбиты на три группы.

К первой группе относятся пять диаграмм, в которых тройная биазеотропия может возникнуть только через стадию образования ТГТА. Эти диаграммы содержат два азеотропа одного и того же типа – либо два «уз-ла», либо два «седла» (рис. 4). В них каждый из тройных азеотропов имеет свой набор единичных К-линий.

Ко второй группе относятся 12 диаграмм, в которых тройная биазеотропия может возникать как через ТГТА, так и через ТВТА. Диаграммы этой группы содержат два тройных азеотропа разного типа – «седло» и «узел». Оба азеотропа имеют один и тот же набор единичных К-линий (рис. 5, 6).

Таблица 1. Типы и количество структур диаграмм ПЖР трехкомпонентных систем с двумя тройными азеотропами

Класс

Тип

Особые точки диаграммы

Количество диаграмм дистилляционных линий

Количество диаграмм единичных К-линий

N0

N1

C1

N2

C2

общее

получены только через ТВТА

с замкнутой сепаратрисой

3.0.2

3.1.2

3.2.2

3.3.2

1

1

2

1

2

3

1

2

3

4

2

1

3

-

2

-

1

1

3

3

-

1

-

-

1

2

-

2

1

3

-

-

1

2

1

-

3

1

2

-

1

1

1

2

1

1

2

1

1

-

1

1

1

-

1

1

-

1

1

2

1

4

5

1

24

1

2

13

11

2

1

2

4

-

21

-

-

11

8

-

1

4

3

-

15

1

-

8

5

-

2

14

5

6

51

6

4

41

13

2

В этой группе появляются диаграммы с нетривиальным ходом сепаратрис «седла», замкнутых в узловой особой точке (рис. 7).

Третья группа диаграмм, самая многочисленная (47 структур), характеризуется тем, что тройная биазеотропия может возникать в этих системах только через ТВТА. Диаграммы этой группы содержат так же тройные азеотропы разного типа. Характерная особенность диаграмм этой группы – нетривиальный ход одной или обеих сепаратрис «седла», когда сепаратриса либо замкнута в узловой точке, либо проходит из «седла» в «седло», либо в одной диаграмме представлены обе эти особенности (рис. 8). Еще одна отличительная черта диаграмм этой группы – в пределах одного и того же типа различным подтипам диаграмм дистилляционных линий могут соответствовать одинаковые структуры диаграмм единичных К-линий.

Характеристики

Тип файла
Документ
Размер
8,08 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7031
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее