111971 (710718), страница 2
Текст из файла (страница 2)
P => G - противоположная;
__
G => P - контрапозитивная (обратная противоположной или противоположнообратная).
Между этими четырьмя видами теорем существует тесная связь:
__
а) (P =>G) и (G => P) - одновременно истинны или ложны;
__
б) (G =>P) и (P => G) - одновременно истинны или ложны.
Изучая какую-либо теорему школьного курса математики, учитель должен придерживаться следующей последовательности:
-
Постановка вопроса (создание проблемной ситуации).
-
Обращение к опыту учащихся.
-
Высказывание предположения.
-
Поиск возможных путей решения.
-
Доказательство найденного факта.
-
Проведение доказательства в максимально простой форме.
-
Установление зависимости доказанной теоремы от ранее известных.
Процесс изучения школьниками теоремы включает следующие этапы: мотивация изучения теоремы; ознакомление с фактом, отраженным в теореме; формулировка теоремы и выяснение смысла каждого слова в формулировке теоремы; усвоение содержания теоремы; запоминание формулировки теоремы; ознакомление со способом доказательства; доказательство теоремы; применение теоремы; установление связей теоремы с ранее изученными теоремами.
При доказательстве математических утверждений используются разные абстрактно-дедуктивные математические методы.
Для того, чтобы учащиеся овладели прямым и косвенным доказательствами, необходимо сформировать у них определенную последовательность умений:
- умение искать доказательство,
- умение проводить доказательство,
- умение оформлять доказательство теоремы.
Функции и графики
Пусть даны две переменные х и у. Говорят, что переменная у является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого, значения х однозначно определить значение у.
Примеры функций:
1. y = kx+b.
2. у= |х|.
3. у = х2.
4. у= 1/х, х>0
5. у = √х.
В каждом из этих примеров указана формула, позволяющая для каждого значения переменной х однозначно вычислить значение переменной у.
Для того чтобы задать функцию, нужно:
-
указать множество всех возможных значений переменной х. Это множество, которое мы будем обозначать D, называют областью определения функции;
-
указать правило, по которому каждому числу х из множества D сопоставляется число у, определяемое числом х. Это число у называется значением функции в точке х. Переменную х называют аргументом.
Функция обычно обозначается одной буквой, например f. Значение функции f в точке х обозначается f (х).
Итак, если задана функция f, то задано множество чисел D и каждому числу x D сопоставлено число y = f(x).
Пусть задана функция f. с областью определения D. Рассмотрим координатную плоскость. По оси абсцисс будем откладывать значение аргумента, а по оси ординат — значение функции. Для каждого числа x D можно вычислить y = f(x) и построить точку М (х; f (х)). Множество всех таких точек образует кривую, называемую графиком функции / в заданной системе координат.
Итак, графиком функции f называется множество точек плоскости с координатами (х; f(х)), где х пробегает область определения функции f.
На рисунке 2 изображены графики функций, которые были приведены в качестве примера в начале параграфа.
Рассмотренные нами ранее простейшие зависимости определяют три важнейшие функции:
Эти функции являются стандартными примерами функций из трех классов, с которыми мы будем часто сталкиваться в дальнейшем: линейных, дробно-линейных и квадратичных.
Рис. 2
Для того чтобы определить переменную у как функцию от переменной х, нужно задать множество значений аргумента х и указать правило вычисления значений у в зависимости от х. Сначала обсудим, как задается правило вычисления значений. Во всех приведенных ранее примерах правило вычисления задавалось формулой, содержащей определенные операции.
Обучаясь математике, мы знакомились с различными действиями, операциями над числами. Например, используя только сложение и умножение, мы можем из числа х получить новые числа, скажем 3х, 3х + 5, х3 + 3х + 5 и т. д. Уже такого рода выражения, многочлены, могут служить для построения довольно богатого запаса функций.
Использование деления сильно расширяет этот запас, позволяет образовать выражения вида и т. п. Функции, которые строятся как отношения многочленов, называют рациональными.
Операция деления отличается от сложения и умножения тем, что она не всегда определена — в знаменателе дроби нельзя ставить нуль. Поэтому, например, в выражение можно подставить любые числа, кроме х=1 и х=-1, при которых знаменатель равен нулю.
Появление новых операций и введение специальных знаков для их обозначения приводят к дальнейшему обогащению наших возможностей — извлечение корня, переход к модулю числа и т. п.
Например, пусть f (х) равно числу —1, если х<0, равно нулю, если х = 0, и равно 1, если х>0. Этими словами мы описали некоторое правило вычисления, применимое к любому числу. Обозначим число f (х), найденное по этому правилу, через sgn х (от латинского слова signum, что означает «знак»). Теперь мы с помощью символа для обозначения новой операции можем строить новые формулы, например
Если функция задана формулой и не указано никаких ограничений, ее областью определения считается множество всех значений аргумента, при которых выполнимы все операции, участвующие в этой формуле. Это множество называют естественной областью определения данной функции.
Так, естественной областью определения функции является множество чисел х, для которых
, т. е. промежуток [— 1; 1].
Еще раз обратим внимание на то, что две важные операции — деление и извлечение корня четной степени — выполнимы не всегда (нельзя разделить на нуль, нельзя извлечь корень четной степени из отрицательного числа). Это ограничение надо помнить и учитывать при нахождении области определения функции, в задании которой участвуют указанные операции.
Значения функции вычисляются путем последовательного выполнения операций: возведение в квадрат, прибавление единицы, извлечение квадратного корня. Можно сказать, что функция
является «сложной функцией», составленной из более простых: и=х2, u = u+l, у=√u.
Итак, правила вычисления значений функции могут задаваться формулами, полученными с помощью известных нам ранее действий над числами.
Другой важный способ задания функции — табличный. В таблице можно непосредственно указать значения функции, однако лишь для конечного набора значений аргумента.
Вычисление значений функции может быть запрограммировано в калькуляторе. Вычислительное устройство может служить для вас способом задания новой функции. Современные вычислительные машины снабжены клавишами, позволяющими немедленно вычислить значения многих полезных функций.
Наконец, часто функцию задают с помощью графика. Графический способ задания функции очень удобен: он дает возможность наглядно представить свойства функции. Приведем примеры.
На рисунке 3 изображены вольтамперные характеристики некоторых электрических элементов, т.е. графически заданные зависимости напряжения от силы тока. Они получены не по готовой формуле, а экспериментально.
На рисунке 4 изображена кардиограмма работы человеческого сердца. Ее можно считать графиком изменения электрического потенциала на волокнах сердечной мышцы во время сердечного цикла.
Рассмотрим функцию y = f(x), график которой изображен на схеме II. Что можно сказать о свойствах функции f, глядя на график?
-
Спроектируем точки графика на ось х. Мы получим отрезок [а; б]. Этот промежуток является областью определения функции. Действительно, каждая прямая, параллельная оси у, проходящая через точку этого отрезка, пересекает график ровно в одной точке; вертикальные прямые, проходящие через точки х вне отрезка [а; б], график не пересекают.
-
Рассмотрим точки пересечения графика с осью х. На чертеже это х1, х2, х3, х4. В этих точках функция обращается в нуль. Числа х1, х2, х3, х4.являются решениями уравнения f(x) = 0 и называются корнями функции (или ее нулями).
-
Корни функции f разбивают область определения на промежутки, в каждом из которых функция сохраняет постоянный знак. Функция положительна на промежутках [а;х1), (х1;х2), (х4;b] и отрицательна на промежутках (х1;х2), (х3;х4).
Объединение промежутков представляет [а;х1), (х2;х3), и (х4;b] собой решение неравенства f (х) > 0, а объединение промежутков (х1; х2) и (х3;х4).— решение неравенства f(x)<0.
4) График функции можно сравнить с профилем дороги, которая то поднимается в гору, то опускается в ложбину. Самые верхние и самые нижние точки этой дороги («вершины») играют важную роль при описании графика. Они соответствуют значениям аргумента, обозначенным на графике т1, т2, т3.
Производная и ее применение
Часто нас интересует не значение какой-либо величины, а ее изменение. Например, сила упругости пружины пропорциональна удлинению пружины; работа есть изменение энергии; средняя скорость — это отношение перемещения к промежутку времени, за который было совершено это перемещение, и т. д.
При сравнении значения функции f в некоторой фиксированной точке х0 со значениями этой функции в различных точках х, лежащих в окрестности х0, удобно выражать разность f (х) — f (х0) через разность х — х0, пользуясь понятиями «приращение аргумента» и «приращение функции». Объясним их смысл.
Пусть х — произвольная точка, лежащая в некоторой окрестности фиксированной точки х0. Разность х — х0 называется приращением независимой переменной (или приращением аргумента) в точке х0 и обозначается ∆х;. Таким образом,
∆х=х-х0,
откуда следует, что х=х0+∆х
Говорят также, что Первоначальное значение аргумента х0 получило приращение ∆х. Вследствие этого значение функции f изменится на величину
f(x) – f(x0) = f(x0+∆х) – f(x0)
Эта разность называется приращением функции f в точке х0, соответствующим приращению ∆х, и обозначается символом ∆f (читается «дельта эф»), т. е. по определению
0>0>