111971 (710718), страница 2

Файл №710718 111971 (Абстрактно-дедуктивный метод введения и формирования математических понятий в 10-11 классах) 2 страница111971 (710718) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

P => G - противоположная;

__

G => P - контрапозитивная (обратная противоположной или противоположнообратная).

Между этими четырьмя видами теорем существует тесная связь:

__

а) (P =>G) и (G => P) - одновременно истинны или ложны;

__

б) (G =>P) и (P => G) - одновременно истинны или ложны.

Изучая какую-либо теорему школьного курса математики, учитель должен придерживаться следующей последовательности:

  1. Постановка вопроса (создание проблемной ситуации).

  2. Обращение к опыту учащихся.

  3. Высказывание предположения.

  4. Поиск возможных путей решения.

  5. Доказательство найденного факта.

  6. Проведение доказательства в максимально простой форме.

  7. Установление зависимости доказанной теоремы от ранее известных.

Процесс изучения школьниками теоремы включает следующие этапы: мотивация изучения теоремы; ознакомление с фактом, отраженным в теореме; формулировка теоремы и выяснение смысла каждого слова в формулировке теоремы; усвоение содержания теоремы; запоминание формулировки теоремы; ознакомление со способом доказательства; доказательство теоремы; применение теоремы; установление связей теоремы с ранее изученными теоремами.

При доказательстве математических утверждений используются разные абстрактно-дедуктивные математические методы.

Для того, чтобы учащиеся овладели прямым и косвенным доказательствами, необходимо сформировать у них определенную последовательность умений:

- умение искать доказательство,

- умение проводить доказательство,

- умение оформлять доказательство теоремы.


Функции и графики

Пусть даны две переменные х и у. Говорят, что переменная у является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого, значения х однозначно определить значение у.

Примеры функций:

1. y = kx+b.

2. у= |х|.

3. у = х2.

4. у= 1/х, х>0

5. у = √х.

В каждом из этих примеров указана формула, позволяющая для каждого значения переменной х однозначно вычислить значение переменной у.

Для того чтобы задать функцию, нужно:

  1. указать множество всех возможных значений переменной х. Это множество, которое мы будем обозначать D, называют областью определения функции;

  2. указать правило, по которому каждому числу х из множества D сопоставляется число у, определяемое числом х. Это число у называется значением функции в точке х. Переменную х называют аргументом.

Функция обычно обозначается одной буквой, например f. Значение функции f в точке х обозначается f (х).

Итак, если задана функция f, то задано множество чисел D и каждому числу x D сопоставлено число y = f(x).

Пусть задана функция f. с областью определения D. Рассмотрим координатную плоскость. По оси абсцисс будем откладывать значение аргумента, а по оси ординат — значение функции. Для каждого числа x D можно вычислить y = f(x) и построить точку М (х; f (х)). Множество всех таких точек образует кривую, называемую графиком функции / в заданной системе координат.

Итак, графиком функции f называется множество точек плоскости с координатами (х; f(х)), где х пробегает область определения функции f.

На рисунке 2 изображены графики функций, которые были приведены в качестве примера в начале параграфа.

Рассмотренные нами ранее простейшие зависимости определяют три важнейшие функции:

Эти функции являются стандартными примерами функций из трех классов, с которыми мы будем часто сталкиваться в дальнейшем: линейных, дробно-линейных и квадратичных.

Рис. 2

Для того чтобы определить переменную у как функцию от переменной х, нужно задать множество значений аргумента х и указать правило вычисления значений у в зависимости от х. Сначала обсудим, как задается правило вычисления значений. Во всех приведенных ранее примерах правило вычисления задавалось формулой, содержащей определенные операции.

Обучаясь математике, мы знакомились с различными действиями, операциями над числами. Например, используя только сложение и умножение, мы можем из числа х получить новые числа, скажем 3х, 3х + 5, х3 + 3х + 5 и т. д. Уже такого рода выражения, многочлены, могут служить для построения довольно богатого запаса функций.

Использование деления сильно расширяет этот запас, позволяет образовать выражения вида и т. п. Функции, которые строятся как отношения многочленов, называют рациональными.

Операция деления отличается от сложения и умножения тем, что она не всегда определена — в знаменателе дроби нельзя ставить нуль. Поэтому, например, в выражение можно подставить любые числа, кроме х=1 и х=-1, при которых знаменатель равен нулю.

Появление новых операций и введение специальных знаков для их обозначения приводят к дальнейшему обогащению наших возможностей — извлечение корня, переход к модулю числа и т. п.

Например, пусть f (х) равно числу —1, если х<0, равно нулю, если х = 0, и равно 1, если х>0. Этими словами мы описали некоторое правило вычисления, применимое к любому числу. Обозначим число f (х), найденное по этому правилу, через sgn х (от латинского слова signum, что означает «знак»). Теперь мы с помощью символа для обозначения новой операции можем строить новые формулы, например

Если функция задана формулой и не указано никаких ограничений, ее областью определения считается множество всех значений аргумента, при которых выполнимы все операции, участвующие в этой формуле. Это множество называют естественной областью определения данной функции.

Так, естественной областью определения функции является множество чисел х, для которых , т. е. промежуток [— 1; 1].

Еще раз обратим внимание на то, что две важные операции — деление и извлечение корня четной степени — выполнимы не всегда (нельзя разделить на нуль, нельзя извлечь корень четной степени из отрицательного числа). Это ограничение надо помнить и учитывать при нахождении области определения функции, в задании которой участвуют указанные операции.

Значения функции вычисляются путем последовательного выполнения операций: возведение в квадрат, прибавление единицы, извлечение квадратного корня. Можно сказать, что функция является «сложной функцией», составленной из более простых: и=х2, u = u+l, у=√u.

Итак, правила вычисления значений функции могут задаваться формулами, полученными с помощью известных нам ранее действий над числами.

Другой важный способ задания функции — табличный. В таблице можно непосредственно указать значения функции, однако лишь для конечного набора значений аргумента.

Вычисление значений функции может быть запрограммировано в калькуляторе. Вычислительное устройство может служить для вас способом задания новой функции. Современные вычислительные машины снабжены клавишами, позволяющими немедленно вычислить значения многих полезных функций.

Наконец, часто функцию задают с помощью графика. Графический способ задания функции очень удобен: он дает возможность наглядно представить свойства функции. Приведем примеры.

На рисунке 3 изображены вольтамперные характеристики некоторых электрических элементов, т.е. графически заданные зависимости напряжения от силы тока. Они получены не по готовой формуле, а экспериментально.

На рисунке 4 изображена кардиограмма работы человеческого сердца. Ее можно считать графиком изменения электрического потенциала на волокнах сердечной мышцы во время сердечного цикла.

Рассмотрим функцию y = f(x), график которой изображен на схеме II. Что можно сказать о свойствах функции f, глядя на график?

  1. Спроектируем точки графика на ось х. Мы получим отрезок [а; б]. Этот промежуток является областью определения функции. Действительно, каждая прямая, параллельная оси у, проходящая через точку этого отрезка, пересекает график ровно в одной точке; вертикальные прямые, проходящие через точки х вне отрезка [а; б], график не пересекают.

  2. Рассмотрим точки пересечения графика с осью х. На чертеже это х1, х2, х3, х4. В этих точках функция обращается в нуль. Числа х1, х2, х3, х4.являются решениями уравнения f(x) = 0 и называются корнями функции (или ее нулями).

  3. Корни функции f разбивают область определения на промежутки, в каждом из которых функция сохраняет постоянный знак. Функция положительна на промежутках [а;х1), (х12), (х4;b] и отрицательна на промежутках 12), (х34).

Объединение промежутков представляет [а;х1), (х23), и (х4;b] собой решение неравенства f (х) > 0, а объединение промежутков 1; х2) и 34).— решение неравенства f(x)<0.

4) График функции можно сравнить с профилем дороги, которая то поднимается в гору, то опускается в ложбину. Самые верхние и самые нижние точки этой дороги («вершины») играют важную роль при описании графика. Они соответствуют значениям аргумента, обозначенным на графике т1, т2, т3.


Производная и ее применение

Часто нас интересует не значение какой-либо величины, а ее изменение. Например, сила упругости пружины пропорциональна удлинению пружины; работа есть изменение энергии; средняя скорость — это отношение перемещения к промежутку времени, за который было совершено это перемещение, и т. д.

При сравнении значения функции f в некоторой фиксированной точке х0 со значениями этой функции в различных точках х, лежащих в окрестности х0, удобно выражать разность f (х) — f (х0) через разность х — х0, пользуясь понятиями «приращение аргумента» и «приращение функции». Объясним их смысл.

Пусть х — произвольная точка, лежащая в некоторой окрестности фиксированной точки х0. Разность х — х0 называется приращением независимой переменной (или приращением аргумента) в точке х0 и обозначается ∆х;. Таким образом,

х=х-х0,

откуда следует, что х=х0+∆х

Говорят также, что Первоначальное значение аргумента х0 получило приращение ∆х. Вследствие этого значение функции f изменится на величину

f(x) – f(x0) = f(x0+х) – f(x0)

Эта разность называется приращением функции f в точке х0, соответствующим приращению ∆х, и обозначается символом ∆f (читается «дельта эф»), т. е. по определению

Характеристики

Тип файла
Документ
Размер
6,25 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6367
Авторов
на СтудИзбе
310
Средний доход
с одного платного файла
Обучение Подробнее