CBRR1293 (710352), страница 7

Файл №710352 CBRR1293 (Развитие продуктивного мышления на уроках математики) 7 страницаCBRR1293 (710352) страница 72016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 7)

В школьных учебниках математики (и не только ныне действующих) мало задач, с помощью которых можно показать учащимся роль наблюдения, аналогии, индукции, эксперимента.

Мы исходим из того, что несмотря на ошибочные гипотезы, которые можно получить в результате наблюдений и неполной индукции, учитель должен использовать все предоставляемые ему программой и учебниками (в том числе и ранее действующими, и пробными, экспериментальными) возможности, чтобы развить у учащихся навыки творческого мышления. С этой целью, например, мы предлагали учащимся следующую задачу: «Может ли: а) сумма пяти последовательных натуральных чисел быть простым числом; б) сумма квадратов пяти последовательных натуральных чисел быть простым числом?» ([3], №1168).

Иногда для развития навыков творческого мышления мы посчитали нужным несколько изменять условия задач, встречающихся в школьных и других учебниках.

Перед решением задачи «Доказать, что если из трехзначного числа вычесть трехзначное число, записанное теми же цифрами, что и первое, но в обратном порядке, то модуль полученной разности будет делиться на 9 и 11» ([1], № 949) целесообразно для математического развития учащихся предложить им установить (с помощью индукции), каким свойством обладает рассматриваемая разность (делиться на 9, 11, 99), и только после этого доказать подмеченную на частных примерах закономерность в общем виде.

Задача «Докажите, что для того, чтобы найти квадрат двузначного числа, оканчивающегося цифрой 5 и имеющего п десятков достаточно число десятков п умножить на п + 1 и к результату приписать 25» ([4], № 969) безусловно имеет определенную познавательную ценность: учащиеся знакомятся с правилом возведения в квадрат двузначных чисел, оканчивающихся на 5. Но роль этой задачи возрастет, если ее сформулировать так: «Найдите и обоснуйте правило возведения в квадрат двузначных чисел, оканчивающихся на цифрой 5».

Полезно предложить учащимся VII класса самим установить с помощью наблюдений и индукции следующие формулы для подсчета сумм:

1 + 3 + 5 + … + (2п – 1) = п2,

13 + 23 + 33 + … + п3 = (1 + 2 + 3 + … + п)2.

Учащиеся, не знакомые с методом математический индукции, используемым для доказательства этих формул, именно с помощью такого рода задач понимали необходимость изучения этого метода в дальнейшем.

Приведенные задачи решались со всеми учащимися на уроках, в процессе изучения или повторения программного материала, а не только с отдельными, хорошо успевающими учениками во внеурочное время.

Мы исходим из того, что необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию творческого мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности.

Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов, софизмов.

Как показали проведенные нами занятия, рассмотрения на уроке математического софизма, для разгадки которого недостаточно известного учащимся материала, вызывает естественный интерес к новой теме, осознание необходимости ее изучения и соответствующий настрой к преодолению предстоящих на пути приобретения новых знаний трудностей.

О методике обучения учащихся решению нестандартных алгебраических задач.

Какая задача называется нестандартной? «Нестан­дартные задачи — это такие, для которых в курсе математики не имеется общих правил и положений, определяющих точную программу их решения» (Фрид­ман Л. М., Турецкий Е. Н. Как научиться решать задачи.— М.: Просвещение, 1989.— С. 48.).

Однако следует заметить, что понятие «нестандартная задача» является относительным. Одна и та же задача может быть стандартной и нестандартной, в зависимости от того, знаком решающий задачу со способами решения задач такого типа или нет. Например, задача «Представьте выражение 2х2 + 2у2 в виде суммы двух квадратов» ([5], № 1264) является для учащихся нестандартной до тех пор, пока учащиеся не познакомились со способами решения таких задач. Но если после решения этой задачи учащимся предложить несколько аналогичных задач, такие задачи становятся для них стандартными. Аналогично задача «При каких натуральных значениях х и у верно равенство 3х + 7у = 23?» ([5], № 1278) является нестандартной для учащихся VII класса до тех пор, пока учитель не познакомит их со способами решения таких задач (что, кстати сказать, можно сделать при обучении учащихся математике уже в VI классе).

Таким образом, нестандартная задача — это задача, алгоритм решения которой учащимся неизвестен, то есть учащиеся не знают заранее ни способа ее решения, ни того, на какой учебный материал опирается решение.

К сожалению, иногда учителя единственным способом обучения решению задач считают показ способов решения определенных видов задач, после чего следует порой изнурительная практика по овладению ими. Нельзя не согласиться с мнением известного американского математика и методиста Д. Пойа, что, если преподаватель математики «заполнит отведенное ему учебное время натаскиванию учащихся в шаблонных упражнениях, он убьет их интерес, затормозит их умственное развитие и упустит свои возможности».

Как же помочь учащимся научиться решать нестандартные задачи?

Универсального метода, позволяющего решить любую нестандартную задачу, к сожалению, видимо нет, так как нестандартные задачи в какой-то степени неповторимы. Однако опыт работы многих передовых учителей, добивающихся хороших результатов в математическом развитии учащихся как у нас в стране, так и за рубежом, позволяет сформулировать некоторые методические приемы обучения учащихся способам решения нестандартных задач.

В литературе (отечественной и зарубежной) методические принципы обучения учащихся умением решать нестандартные задачи описаны неплохо. Наиболее удачными, на наш взгляд, в этом отношении являются книги Д. Пойа «Как решать задачу», «Математическое открытие», «Математика и правдоподобные рассуждения» Л. М. Фридмана, Е. Н. Турецкого «Как научиться решать задачу», Ю. М. Колягина, В. А. Оганесяна «Учись решать задачи». И хотя некоторые из них адресованы учащимся, желающим научиться решать задачи, они, без сомнения, могут быть использовании учителями при обучении школьников умениям решать нестандартные задачи.

Прежде всего отметим, что научить учащихся решать задачи (в том числе и нестандартные) можно только в том случае, если у учащихся будет желание их решать, то есть если задачи будут содержательными и интересными с точки зрения ученика. Поэтому проблема первостепенной важности, стоящая перед учителем,— вызвать у учащихся интерес к решению той или иной задачи. Необходимо тщательно отбирать интересные задачи и делать их привлекательными для учащихся. Как это сделать — решать самому учителю. Наибольший интерес вызывают у учащихся задачи, взятые из окружающей их жизни, задачи, естественным образом связанные со знакомыми учащимся вещами, опытом, служащие понятной ученику цели.

Учитель, как нам кажется, должен уметь находить интересные для учащихся задачи и своевременно предлагать их. Приведем примеры.

Учитель математики обратил внимание учащихся, что в фильме «Возвращение с орбиты», показанном накануне по телевизору, главный герой, узнав, что его невесте 24 года, говорит ей: «Когда тебе будет столько лет, сколько мне сейчас, мне будет 60». Вопрос учителя «Сколько лет герою фильма» вызвал у всех учащихся VII—VIII классов желание решить предложенную задачу, хотя от некоторых она потребовала настоящего усилия.

Другой пример. Желая научить учащихся решать в натуральных числах уравнения вида ах + by = с, можно, конечно, предложить учащимся выполнить упражнение № 1278 из [5] (При каких натуральных значениях х и у верно равенство 3х+7у=23?). Но, как показывают наши наблюдения, учащиеся легче и с бóльшим интересом учатся способам решения таких уравнений, если им предложить, например, следующую задачу:

«Чтобы купить вещь, нужно уплатить 19 р. У покупателя только трехрублёвые купюры, у кассира только десятирублевые. Может ли покупатель расплатиться за покупку? А если у кассира только пятирублевые купюры?»

Большой интерес, являющийся для учащихся стимулом для приобретения умений и навыков решения неопределенных уравнений первой степени с двумя неизвестными в натуральных и целых числах, вызывает, как правило, у учащихся VII класса следующая задача:

«В комнате стоят стулья и табуретки. У каждой табуретки три ножки, у каждого стула четыре ножки. Когда на всех стульях и табуретках сидят люди, в комнате 39 «ног». Сколько стульев и табуреток в комнате?» (Если стульев х, табуреток у, то имеем уравнение 4х + 3у + 2 (х + у) = 39, откуда 5у = 39 – 6х, х = 4, у = 3.) Много интересных задач на соответствующую тематику имеется в журнале «Квант».

Мы понимаем, конечно, что нельзя приучать учащихся решать только те задачи, которые вызывают у них интерес. Но нельзя и забывать, что такие задачи учащийся решает легче и свой интерес к решению одной или нескольких задач он может в дальнейшем перенести и на «скучные» разделы, неизбежные при изучении любого предмета, в том числе и математики.

Таким образом, учитель, желающий научить школьников решать задачи, должен, на наш взгляд, вызвать у них интерес к задаче, убедить, что от решения математической задачи можно получить такое же удовольствие, как от разгадывания кроссворда или ребуса.

Задачи не должны быть слишком легкими, но и не должны быть слишком трудными, так как учащиеся, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. Не следует предлагать учащимся задачу, если нет уверенности, что они смогут ее решить.

Ну а как же помочь учащемуся научиться решать задачи, если интерес к решению задач у него есть и трудности решения его не пугают? В чем должна заключаться помощь учителя ученику, не сумевшего решить интересную для него задачу? Как эффективным образом направить усилия ученика, затрудняющегося самостоятельно начать или продолжить решение задачи?

Мы считаем, что не следует идти по самому легкому в этом случае пути — познакомить ученика с готовым решением. Не следует и подсказывать, к какому разделу школьного курса математики относится предложенная задача, какие известные учащимся свойства и теоремы нужно применить при решении.

Решение нестандартной задачи — очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться. Необходимо также хорошее знание фактического материала, владение общими подходами к решению задач, опыт в решении нестандартных задач.

В процессе решения каждой задачи и ученику, решающему задачу, и учителю, обучающему решению задач, целесообразно четко разделять четыре ступени: 1) изучение условия задачи; 2) поиск плана решения и его составление; 3) осуществление плана, то есть оформление найденного решения; 4) изучение полученного решения — критический анализ результата решения и отбор полезной информации.

Даже при решении несложной задачи учащиеся много времени тратят на рассуждения о том, за что взяться, с чего начать. Чтобы помочь учащимся найти путь к решению задач, учитель должен уметь поставить себя на место решающего задачу, попытаться увидеть и понять источник его возможных затруднений, направить его усилия в наиболее естественное русло. Умелая помощь ученику, оставляющая ему разумную долю самостоятельной работы, позволит учащемуся развить математические способности, накопить опыт, который в дальнейшем поможет находить путь к решению новых задач.

«Лучшее, что может сделать учитель для учащегося, состоит в том, чтобы путем неназойливой помощи подсказать ему блестящую идею… Хорошие идеи имеют своим источником прошлый опыт и ранее приобретенные знания… Часто оказывается уместным начать работу с вопроса: «Известна ли вам какая-нибудь родственная задача?» (Пойа Д.). Таким образом, хорошим средством обучения решению задач, средством для нахождения плана решения являются вспомогательные задачи. Умение подбирать вспомогательные задачи свидетельствует о том, что учащийся уже владеет определенным запасом различных приемов решения задач. Если этот запас не велик (что вполне очевидно для учащихся VII—VIII классов), то учитель, видя затруднения учащегося, должен сам предложить вспомогательные задачи. Умело поставленные вспомогательные вопросы, вспомогательная задача или система вспомогательных задач помогут понять идею решения. Необходимо стремиться к тому, чтобы учащийся испытал радость от решения трудной для него задачи, полученного с помощью вспомогательных задач или наводящих вопросов, предложенных учителем.

Так, когда учащиеся затруднялись решить с помощью составления уравнения задачу «К некоторому двузначному числу слева и справа приписали по единице. В результате получили число в 23 раза большее первоначального. Найдите это двузначное число» ([5], № 1254), то в качестве вспомогательных задач мы предлагали следующие:

  1. К числу х приписали справа цифру 4. Представьте полученное число в виде суммы, если х: а) двузначное число; б) трехзначное число.

  2. К числу у приписали слева цифру 5. Представьте полученное число в виде суммы, если у: а) двузначное число; б) трехзначное число.

Конечно, думающий ученик задастся вопросом: как самому, без помощи учителя, находить вспомогательные задачи?

Безусловно, учащихся следует приучать самим составлять вспомогательные задачи, или упрощать условия предложенных задач так, чтобы без помощи учителя найти способы их решения.

Умение находить вспомогательные задачи, как и вообще умение решать задачи, приобретается практикой. Предлагая учащимся задачу, следует посоветовать выяснить, нельзя ли найти связь между данной задачей и какой-нибудь задачей с известным решением или с задачей, решающейся проще.

Для приобретения навыков решения довольно сложных задач нужно приучать школьников больше внимания уделять изучению полученного решения. Для этого мы предлагали учащимся видоизменять условия задачи, чтобы закрепить способ ее решения, придумывать задачи аналогичные решенным, более или менее трудные, с использованием найденного при решении основной задачи способа решения.

Характеристики

Тип файла
Документ
Размер
219,5 Kb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7029
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее