111622 (710273), страница 3
Текст из файла (страница 3)
Традиционные программы не учитывают этого обстоятельства. Поэтому они не реализуют многих возможностей, таящихся в процессе интеллектуального развития ребенка.
Материалы, имеющиеся в современной детской психологии, позволяют положительно оценивать общую идею построения такого учебного предмета, в основе которого лежали бы понятия об исходных математических структурах. Конечно, на этом пути возникают большие трудности, так как еще нет опыта построения такого учебного предмета. В частности, одна из них связана с определением возрастного "порога", с которого осуществимо обучение по новой программе. Если следовать логике Ж. Пиаже, то, видимо, по этим программам можно учить лишь тогда, когда у детей уже полностью сформировались операторные структуры (с 14 - 15 лет). Но если предположить, что реальное математическое мышление ребенка формируется как раз внутри того процесса, который обозначается Ж. Пиаже как процесс складывания операторных структур, то эти программы можно вводить гораздо раньше (например, с 7 - 8 лет), когда у детей начинают формироваться конкретные операции с высшим уровнем обратимости. В "естественных" условиях, при обучении по традиционным программам формальные операции, возможно, только и складываются к 13 - 15 годам. Но нельзя ли "ускорить" их формирование путем более раннего введения такого учебного материала, усвоение которого требует прямого анализа математических структур?
Представляется, что такие возможности есть. К 7 - 8 годам у детей уже в достаточной мере развит план мыслительных действий, и путем обучения по соответствующей программе, в которой свойства математических структур даны "явно" и детям даются средства их анализа, можно быстрее подвести детей к уровню "формальных" операций, чем в те сроки, в которые это осуществляется при "самостоятельном" открытии этих свойств.
При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж. Пиаже к 7 - 11 годам, сами неразрывно связаны с формами организации обучения, свойственными традиционной начальной школе. Это обучение (и у нас, и за рубежом) ведется на основе предельно эмпирического содержания, зачастую вообще не связанного с понятийным (теоретическим) отношением к объекту. Такое обучение поддерживает и закрепляет у детей мышление, опирающееся на внешние, прямым восприятием уловимые признаки вещей.
Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь структур детского мышления и общеалгебраических структур, хотя "механизм" этой связи далеко не ясен и почти не исследован. Наличие этой связи открывает принципиальные возможности (пока лишь возможности!) для построения учебного предмета, развертывающегося по схеме "от простых структур - к их сложным сочетаниям". Одним из условий реализации этих возможностей является изучение перехода к опосредствованному мышлению и его возрастных нормативов. Указанный способ построения математики как учебного предмета сам может быть мощным рычагом формирования у детей такого мышления, которое опирается на достаточно прочный понятийный фундамент.
1.3 Проблема происхождения алгебраических понятий и ее значение для построения учебного предмета
Разделение школьного курса математики на алгебру и арифметику, конечно же, условно. Переход от одного к другому происходит постепенно. В школьной практике смысл этого перехода маскируется тем, что изучение дробей фактически происходит без развернутой опоры на измерение величин - дроби даются как отношения пар чисел (хотя формально важность измерения величин в методических руководствах признается). Развернутое введение дробных чисел на основе измерения величин неизбежно приводит к понятию действительного числа. Но последнего как раз обычно и не происходит, так как учащихся долго держат на работе с рациональными числами, а тем самым задерживают их переход к "алгебре".
Иными словами, школьная алгебра начинается именно тогда, когда создаются условия для перехода от целых к действительным числам, к выражению результата измерения дробью (простой и десятичной - конечной, а затем бесконечной).
Причем исходным может быть знакомство с операцией измерения, получение конечных десятичных дробей и изучение действий над ними. Если учащиеся уже владеют такой формой записи результата измерения, то это служит предпосылкой для "забрасывания" идеи о том, что число может выражаться и бесконечной дробью. И эту предпосылку целесообразно создавать уже в пределах начальной школы.
Если понятие дробного (рационального) числа изъять из компетенции школьной арифметики, то граница между нею и "алгеброй" пройдет по линии различия между целым и действительным числами. Именно оно "рубит" курс математики на две части. Здесь не простое различие, а принципиальный "дуализм" источников - счета и измерения.
Следуя идеям Лебега относительно "общего понятия числа", можно обеспечить полное единство преподавания математики, но лишь с момента и после ознакомления детей со счетом и целым (натуральным) числом. Конечно, сроки этого предварительного ознакомления могут быть разными (в традиционных программах для начальной школы они явно затянуты), в курс начальной арифметики можно даже вносить элементы практических измерений (что имеет место в программе), - однако все это не снимает различия оснований у арифметики и "алгебры" как учебных предметов. "Дуализм" исходных пунктов препятствует и тому, чтобы в курсе арифметики по-настоящему "приживались" разделы, связанные с измерением величин и переходом к подлинным дробям. Авторы программ и методисты стремятся сохранить устойчивость и "чистоту" арифметики как школьного учебного предмета. Указанное различие источников является основной причиной преподавания математики по схеме - сначала арифметика (целое число), затем "алгебра" (действительное число).
Эта схема кажется вполне естественной и незыблемой, к тому же она оправдывается многолетней практикой преподавания математики. Но есть обстоятельства, которые с логико-психологической точки зрения требуют более тщательного анализа правомерности этой жесткой схемы преподавания.
Дело в том, что при всем различии этих видов чисел они относятся именно к числам, т.е. к особой форме отображения количественных отношений. Принадлежность целого и действительного чисел к "числам" служит основанием для предположения о генетической производности и самих различий счета и измерения: у них есть особый и единый источник, соответствующий самой форме числа. Знание особенностей этой единой основы счета и измерения позволит более четко представить условия их происхождения, с одной стороны, и взаимосвязь - с другой.
К чему же обратиться, чтобы нащупать общий корень ветвистого дерева чисел? Представляется, что прежде всего необходимо проанализировать содержание понятия величина. Правда, с этим термином сразу связывается другой - измерение. Однако правомерность подобного соединения не исключает определенной самостоятельности смысла "величины". Рассмотрение этого аспекта позволяет сделать выводы, сближающие, с одной стороны, измерение со счетом, с другой - оперирование числами с некоторыми общематематическими отношениями и закономерностями.
Итак, что такое "величина" и какой интерес она представляет для построения начальных разделов школьной математики?
В общем употреблении термин "величина" связан с понятиями "равно", "больше", "меньше", которые описывают самые различные качества (длину и плотность, температуру и белизну). В.Ф. Каган ставит вопрос о том, какими общими свойствами эти понятия обладают. Он показывает, что они относятся к совокупностям - множествам однородных предметов, сопоставление элементов которых позволяет применить термины "больше", "равно", "меньше" (например, к совокупностям всех прямолинейных отрезков, весов, скоростей и т.д.).
Множество предметов только тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить относительно любых его элементов А и В, будет ли А равно В, больше В или меньше В. При этом для любых двух элементов А и В имеет место одно и только одно из соотношений: А=В, А>В, А<В.
Эти предложения составляют полную дизъюнкцию (по крайней мере одно имеет место, но каждое исключает все остальные).
В.Ф. Каган выделяет следующие восемь основных свойств понятий "равно", "больше", "меньше": ([10], c. 17-31).
1) Имеет место по крайней мере одно из соотношений: А=В, А>В, А<В.
2) Если имеет место соотношение А=В, то не имеет места соотношение А<В.
3) Если имеет место соотношение А=В, то не имеет места соотношение А>В.
4) Если А=В и В=С, то А=С.
5) Если А>В и В>С, то А>С.
6) Если А<В и В<С, то А<С.
7) Равенство есть отношение обратимое: из соотношения А=В всегда следует соотношение В=А.
8) Равенство есть соотношение возвратное: каков бы ни был элемент А рассматриваемого множества, А=А.
Первые три предложения характеризуют дизъюнкцию основных соотношений "=", ">", "<". Предложения 4 - 6 - их транзитивность при любых трех элементах А, В и С. Следующие предложения 7 - 8 характеризуют только равенство - его обратимость и возвратность (или рефлексивность). Эти восемь основных положений В.Ф.Каган называет поcтулатами сравнения, на базе которых можно вывести ряд других свойств величины.
Эти выводные свойства В.Ф. Каган описывает в форме восьми теорем:
I. Соотношение А>В исключает соотношение В>А (А<В исключает В<А).
II. Если А>В, то В<А (если АА).
III. Если имеет место А>В, то не имеет места A IV. Если А1=А2, А2=А3,.., Аn-1=А1, то А1=Аn. V. Если А1>А2, А2>А3,.., Аn-1>Аn, то А1>Аn. VI. Если А1<А2, А2<А3,.., Аn-1<Аn, то А1<Аn. VII. Если А=С и В=С, то А=В. VIII. Если имеет место равенство или неравенство А=В, или А>В, или А<В, то оно не нарушится, когда мы один из его элементов заменим равным ему элементом (здесь имеет место соотношение типа: если А=В и А=С, то С=В; если А>В и А=С, то С>В и т.д.). Постулатами сравнения и теоремами, указывает В.Ф. Каган, "исчерпываются все те свойства понятий "равно", "больше" и "меньше", которые в математике с ними связываются и находят себе применение независимо от индивидуальных свойств того множества, к элементам коего мы их в различных частных случаях применяем" ([10], стр. 31). Свойства, указанные в постулатах и теоремах, могут характеризовать не только те непосредственные особенности объектов, которые мы привыкли связывать с "равно", "больше", "меньше", но и со многими другими особенностями (например, они могут характеризовать отношение "предок - потомок"). Это позволяет встать при их описании на общую точку зрения и рассматривать, например, под углом зрения этих постулатов и теорем любые три вида отношений "альфа", "бета", "гамма" (при этом можно установить, удовлетворяют ли эти отношения постулатам и теоремам и при каких условиях). Под таким углом зрения можно, например, рассматривать такое свойство вещей, как твердость (тверже, мягче, одинаковая твердость), последовательность событий во времени (следование, предшествование, одновременность) и т.д. Во всех этих случаях соотношения "альфа", "бета", "гамма" получают свою конкретную интерпретацию. Задача, связанная с подбором такого множества тел, которое бы имело эти отношения, а также выявление признаков, по которым можно было бы характеризовать "альфа", "бета", "гамма", - это есть задача на определение критериев сравнения в данном множестве тел (практически ее в ряде случаев решить нелегко). "Устанавливая критерии сравнения, мы претворяем множество в величину", - писал В.Ф. Каган ([10], стр. 41). Реальные объекты могут рассматриваться под углом зрения разных критериев. Так, группа людей может рассматриваться по такому критерию, как последовательность моментов рождения каждого ее члена. Другой критерий - относительное положение, которое примут головы этих людей, если их поставить рядом на одной горизонтальной плоскости. В каждом случае группа будет претворяться в величину, имеющую соответствующее наименование - возраст, рост. В практике величиной обычно обозначают как бы не самое множество элементов, а новое понятие, введенное для различения критериев сравнения (наименование величины). Так возникают понятия "объем", "вес", "электрическое напряжение" и т.д. "При этом для математика величина вполне определена, когда указаны множество элементов и критерии сравнения", - отмечал В.Ф. Каган ([10], стр. 47). В качестве важнейшего примера математической величины этот автор рассматривает натуральный ряд чисел. С точки зрения такого критерия сравнения, как положение, занимаемое числами в ряду (занимают одно место, следует за..., предшествует), этот ряд удовлетворяет постулатам и поэтому представляет собой величину. По соответствующим критериям сравнения совокупность дробей также претворяется в величину. Таково, по В.Ф. Кагану, содержание теории величины, играющей важнейшую роль в деле обоснования всей математики. Работая с величинами (отдельные их значения целесообразно фиксировать буквами), можно производить сложную систему преобразований, устанавливая зависимости их свойств, переходя от равенства к неравенству, выполняя сложение (и вычитание), причем при сложении можно руководствоваться коммутативным и ассоциативным свойствами. Так, если дано соотношение А=В, то при "решении" задач можно руководствоваться соотношением В=А. В другом случае при наличии соотношений А>В, В=С можно заключить, что А>С. Поскольку при а>b существует такое с, что а=b+с, то можно найти разность а и b (а-b=с), и т.д. Все эти преобразования можно выполнить на физических телах и других объектах, установив критерии сравнения и соответствие выделенных отношений постулатам сравнения. Приведенные выше материалы позволяют заключить, что и натуральные, и действительные числа одинаково прочно связаны с величинами и некоторыми их существенными особенностями. Нельзя ли эти и другие свойства сделать предметом специального изучения ребенка еще до того, как вводится числовая форма описания отношения величин? Они могут послужить предпосылками для последующего развернутого введения числа и его разных видов, в частности для пропедевтики дробей, понятий координат, функции и других понятий уже в младших классах. До сих пор наши рассуждения носили теоретический характер и были направлены на выяснение математических предпосылок построения такого начального раздела курса, который знакомил бы детей с основными алгебраическими понятиями (до специального введения числа). Выше были описаны основные свойства, характеризующие величины. Естественно, что детям 7 лет бессмысленно читать "лекции" относительно этих свойств. Необходимо было найти такую форму работы детей с дидактическим материалом, посредством которой они смогли бы, с одной стороны, выявить в окружающих их вещах эти свойства, с другой - научились бы фиксировать их определенной символикой и проводить элементарный математический анализ выделяемых отношений. В этом плане программа должна содержать, во-первых, указание тех свойств предмета, которые подлежат освоению, во-вторых, описание дидактических материалов, в-третьих, - и это с психологической точки зрения главное - характеристики тех действий, посредством которых ребенок выделяет определенные свойства предмета и осваивает их. Эти "составляющие" образуют программу преподавания в собственном смысле этого слова. Конкретные особенности этой гипотетической программы и ее "составляющих" имеет смысл излагать при описании процесса самого обучения и его результатов. Здесь представляется схема данной программы и ее узловые темы. Тема I. Уравнивание и комплектование объектов (по длине, объему, весу, составу частей и другим параметрам). Практические задачи на уравнивание и комплектование. Выделение признаков (критериев), по которым одни и те же объекты могут быть уравнены или укомплектованы. Словесное обозначение этих признаков ("по длине", по весу" и т.д.). Эти задачи решаются в процессе работы с дидактическим материалом (планками, грузами и т.д.) путем: Что может быть содержанием этого начального раздела? Это знакомство с физическими объектами, критериями их сравнения, выделяющими величину, как предмет математического рассмотрения, знакомство со способами сравнения и знаковыми средствами фиксации его результатов, с приемами анализа общих свойств величин. Это содержание нужно развернуть в относительно подробную программу преподавания и, главное, связать ее с теми действиями ребенка, посредством которых он может этим содержанием овладеть (конечно, в соответствующей форме). Вместе с тем нужно экспериментальным, опытным путем установить, могут ли дети 7 лет усвоить эту программу, и какова целесообразность ее введения для последующего преподавания математики в начальных классах в направлении сближения арифметики и начальной алгебры.