111600 (710249)
Текст из файла
Сахалинский Государственный Университет
Институт Естественных Наук
План урока геометрии
Тема: Свойство медиан треугольника
Меркулов М. Ю.
411
12.03.03
Руководитель:
Выполнил:
Группа:
Дата:
Оценка:
Южно-Сахалинск
2003г.
Тип: урок по ознакомлению с новым материалом
Цель: ознакомить учащихся со свойством медиан треугольника, научить пользоваться этим свойством при решении задач
Структура:
Организационный момент
Д/з
Постановка цели
АОЗ
Углы при пересечении прямых секущей
Средняя линия треугольника
Параллелограмм
Подобные треугольники
Новый материал
Свойство медиан треугольника
Закрепление
Решение задач
Цель
У) На этом уроке мы рассмотрим свойство медиан треугольника и будем решать задачи на применение этого свойства и свойств средней линии треугольника.
АОЗ
В
) Назовите внутренние односторонние углы.
О) 1 и 3, 2 и 4.
В) Что можно сказать о внутренних односторонних углах?
О) Их сумма равна 180.
В) Назовите внутренние накрест лежащие углы.
О) 1 и 4, 2 и 3.
В) Что можно сказать о внутренних накрест лежащих углах?
О) Они равны.
В) Назовите соответственные углы.
О) 1 и 6, 2 и 5, 3 и 7, 4 и 8.
В) Что можно сказать о соответственных углах?
О) Они равны.
В) Что такое средняя линия треугольника?
О) Это отрезок, соединяющий середины 2-х сторон треугольника.
В) Какими свойствами обладает средняя линия треугольника?
О) Средняя линия треугольника параллельна одной из сторон треугольника и равна ее половине.
В) Какая фигура называется параллелограммом?
О) Четырехугольник, у которого стороны параллельны
В) Какое свойство сторон параллелограмма вы знаете?
О) Противолежащие стороны параллелограмма равны
В) Какое свойство диагоналей параллелограмма вы знаете
О) Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам
В) Какие треугольники называются подобными?
О) Треугольники, у которых соответственные углы равны, сходственные стороны пропорциональны
В) Сформулируйте первый признак равенства треугольников
О) Если два угла одного треугольника равны соответственно двум углам второго треугольника, то такие треугольники подобны.
Новый материал
У) Запишите формулировку теоремы, которую мы сегодня разберем:
Медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2:1.
Постройте чертеж
В) Что такое медиана?
О) Отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Запишите условие:
Дано: AB1=B1C CA1=A1B AA1BB1=O
Доказать:
В) Чем является отрезок AB?
О) Средней линией ABC
В) Какие свойства средней линии нам известны
О
) Она параллельна одной из сторон и равна ее половине
В) B1A1||AB, что можно сказать об углах A1B1B и B1BA?
О) Они равны, как внутренние накрест лежащие
В) Что мы можем сказать о AOB и A1OB1?
О) Они подобны, т.к у них 2 пары равных углов.
В) Что следует из подобия?
У) Мы доказали, что две медианы делятся точкой пересечения в отношении 2:1. То, что третья медиана и одна из этих двух делятся точкой пересечения в том же отношении, доказывается аналогично. Это значит, что все 3 медианы пересекаются в одной точке.
Решение задач
N570
Дано: ABCD – параллелограмм AM=MB AC=18см
A
B
C
D
Найти: AK, KC
O
У
M
) Проведем диагонали ABCDВ) Что нам известно о диагоналях параллелограмма?
О
K
) Они точкой пересечения делятся пополамAO=OC BO=OD AO=OC=9см
У) Рассмотрим ABD
В) Чем являются отрезки AO и DM?
О) Медианами ABD
В) Какое свойство медиан мы только что изучили?
О) Они точкой пересечения делятся в отношении 2:1
К=КО+ОС=9+3=12см
О
A
B
E
F
G
8
8
5
7
7
твет: 6см, 12смN564
Дано: AB=8см AC=7см BC=5см
AE=BE CF=BF AG=CG
Н
5
айти: PEFGВ) Как называются отрезки EF, EG, FG?
В
C
) Чему равны их длины? В) Чему равен периметр треугольника?
Решение: т.к. EF, EG, FG – средние линии ABС, то
N568а
Дано: ABCD-прямоугольник AE=BE=BF=FC CG=DG AH=DH
B
C
F
Доказать: EFGH – ромб
Д
E
G
ок-во: проведем диагонали AC и BDE
F-средняя линия ABC EF=AC/2
HG-средняя линия ADC HG=AC/2
A
D
H
Аналогично EH=FG=BD/2
По свойству диагоналей прямоугольника AC=BD, значит EF=HG=EH=FG
EFGH-ромб
Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.















