rastwory (710118), страница 2
Текст из файла (страница 2)
Наряду с этим, химический язык и номенклатура являются средством учета знаний учащихся и изучения развития их мышления.
С помощью химического языка и номенклатуры, учащиеся излагают свои знания о составе, химических свойствах и применении веществ, объясняют реакции с точки зрения теории строения вещества. В процессе обучения химии, должен быть достигнут свободный переход учащихся от химического языка к химическим терминам, общенаучным словам и предложениям, от них к самостоятельной постановке эксперимента, т.е. к практическим действиям.
Таким образом, роль химического языка в овладении школьниками химическими знаниями, умением и навыками чрезвычайно велика. В процессе последовательного овладения предметом, химический язык совершенствуется в тесной связи с развитием теоретических знаний, с накоплением химических фактов и усложнением химических понятий.
Для успешного формирования химического языка необходимо внедрять в школьную практику проблемные и игровые ситуации, элементы занимательности и исторические сведения, а главное дидактические средства обучения, в частности – фланеле, магнитографию и химический эксперимент.
Примеры практических заданий по формированию химического языка.
-
Проанализируйте содержание первой главы учебника [1], выпишите новые химические понятия и дайте им определения.
-
Из главы «Первоначальные химические понятия» [1], выпишите предлагаемые в ней символы химических элементов и дайте им названия.
-
В терминологический словарь выпишите формируемые в главе I [1] термины, дайте им характеристику.
-
Из перечисленных химических знаков выписать символы элементов, относящихся к металлам и дать им названия:
К, Н, Na, O, Cu, N, Fe, S, Ln.
-
Из перечисленных химических знаков элементов выписать символы элементов – неметаллов и назвать их:
C, Mg, Br, Ag, Cu, P, Al.
-
По названию химического элемента напишите его химический символ:
Никель, Фосфор, Кальций, Литий, Гелий, Магний, Хлор, Барий, Углерод.
-
Какова количественная характеристика элементов:
Кислород, Калий, Сера, Углерод, Фтор, Барий, Фосфор ?
-
Расшифруйте, что означает следующая запись:
4H, 4H2, H2, O, 5O, O2, 5O2 ?
9. Напишите: пять атомов азота; пять молекул азота; три атома хлора; пять молекул хлора.
Работа с химической формулой.
-
Качественная характеристика.
Рассмотрим на примере оксида фосфора (V).
1. Эмпирическая формула - P2O5
-
Вещество состоит из элементов: фосфора и кислорода.
-
Относится к классу оксидов, так как отвечает определению оксидов:
Оксиды – это сложные вещества, состоящие из двух элементов, один из которых кислород, проявляющий степень окисления – 2.
-
Данный оксид относится к классу кислотных оксидов, так как ему соответствует ортофосфорная кислота:
P2O5 - H3PO4
-
Количественная характеристика.
1. Молекула P2O5 состоит из двух атомов фосфора и пяти атомов кислорода.
-
Определим относительную молекулярную массу оксида:
Mr(P2O5) = 2Ar(P) + 5Ar(O) = 2.31 + 5.16 = 142
-
Молярная масса оксида фосфора (V)
M(P2O5) = 142 г/моль.
-
Определим массовые доли элементов в P2O5, используя следующую формулу:
n . Ar(Э)
W(Э) = , где
Mr (вещества)
W – массовая доля элемента
n - число атомов элемента
Ar – относительная атомная масса элемента
Мr – относительная молекулярная масса вещества.
а) определим относительную молекулярную массу вещества (см. выше)
Mr(P2O5) = 142
б) расчет массовой доли фосфора:
n(P) Ar(P) 2 31
W(P) = ; W(P) = = 0,4366 или (в долях единицы) 43,66 %
Mr(P2O5) 142
в) расчет массовой доли кислорода:
n(O) Ar(O) 516
W(O) = ; W(O) = = 0,5634 или 56,34 %
Mr(P2O5) 142
W(O) можно определить и следующим образом :
W(O) = 100% - W(P) = 100% - 43,66% = 56,34%
5. Определение отношения моль атомов элементов по формуле P2O5
n(P) = 2 ; n(O) = 5; n(P):n(O) = 2:5 .
6. Определение отношения масс элементов:
P2O5 m(P) = 231 = 62 ; m(O) = 5 16 = 80 ; m(P):m(O) = 62:80 , сократим на 2
m(P):m(O) = 31:40 .
7. Определение валентности элементов по формуле P2O5
а) наименьшее общее кратное символов элементов, которые делятся на 2 и 5
равно 10.
б) число 10 делим на величину индекса каждого элемента и получаем значение валентности элемента.
V II
P2O5 P2O5
10
наименьшее общее
кратное
8. На ряду с этим, по валентности можно составить формулу вещества. Например, в оксиде фосфора валентность фосфора равна трем, а кислорода двум.
III II
P O
Находим наименьшее общее кратное – число, которое делиться на 3 и 2 – число 6. Это число (6) делим на соответствующие элементам значения валентностей и получаем соответствующие элементам индексы:
для фосфора 6:3 = 2;
для кислорода 6:2 = 3
и составляем формулу вещества: P2O3 .
Приведем примеры задач на расчет по формуле:
№1. Соединение некоторого элемента имеет формулу Э3О4 , а массовая доля элемента в нем 72,4%. Установите элемент [6].
Методика решения:
Дано: 1. Выразим массовую долю элемента:
Э3О4 n(Э) Ar(Э)
W(Э)= 72,4%, W(Э) = ;
и ли 0,724 Mr(Э3О4)
Э - ? 2. Примем Ar(Э) = X, тогда
Mr(Э3О4) = 3X + 416 = 3X + 64 .
3. Подставим принятые обозначения в формулу
3 X
0,724 = ; находим Х
3X + 64
2,172 Х + 46,34 = 3 Х ; 0,828 X = 46,34 ; X= 56.
Следовательно, Ar(Э) = 56; Элемент – железо.
№2. В результате обжига на воздухе 8,0 г сульфида молибдена было получено 7,2 г оксида молибдена (VI). Установите формулу исходного сульфида молибдена [7].
Методика решения:
Дано: 1. По закону сохранения массы веществ
m(MoxSу) = 8,0 г m(Mo) до реакции = m(Mo) после реакции след-но
m (MoO3) = 7,2 г n(Mo) до реакции = n(Mo) после реакции
MoxSу - ? 2. Определим количество вещества оксида
молибдена (VI)
m 7,2 г
n(MoO3) = = = 0,05 моль
M 144 г/моль
3. Определим количество вещества и массу молибдена
n(Mo) = n(MoO3) = 0,05 моль; m(Mo) = 0,05 96 = 4,8 г
4. Найдем массу серы и количество вещества серы
m 3,2
m(S) = m(MoxSу) – m(Mo) = 8,0 – 4,8 = 3,2 г; n(S) = = = 0,10 моль
M 32
5. Найдем отношение количеств веществ молибдена и серы
n(Mo) : n(S) = 0,05:0,10 = 1:2
Следовательно, формула сульфида молибдена: MoS2
№3. Определить массу водорода в (г), содержащегося в 3,01 1024 молекул метана [8].
Методика решения:
Д ано: Для решения задачи необходимо последовательно
СH4 использовать следующие формулы:
N (СH4) = 3,01 1024 N m
n = и n = ;
m(H) - ? NA M
-
Находим количество вещества метана и водорода:
N(СH4)
n(СH4) = ; где NA – постоянная Авогадро, равная 6,02 1023
NA структурных единиц.
3,01 1024
n(СH4) = = 5 моль
6,02 1023
n(H) = 4n (СH4) = 4 5 = 20 моль атомов водорода
-
Определим массу водорода в (г):
m(H) = n(H) M(H) = 20 1 = 20 г.
№4. Какова молекулярная формула углеводорода, содержащего 82,5% углерода. Плотность паров по воздуху составляет 2 [9].
Методика решения:
Д ано: 1. По относительной плотности паров по воздуху
W(C) = 82,5% расчитаем относительную молекулярную массу
Dвозд = 2 углеводорода СхНу
Mr(СхНу)
СхНу - ? Dвозд = ; Mr(возд) = 29
Mr(возд)
Mr(СхНу) = 29 2 = 58 .
-
Используя формулу расчета массовой доли элемента, определим число атомов углерода:
n(C) Ar(C) X 12
W(C) = ; n(C) = X ; 0,825 = ; X = 4; n(C) = 4
Mr(СхНу) 58
-
Определим массовую долю элемента водорода и число его атомов:
W(H) = 100% - W(C) = 100 – 82,5 = 17,5%
n(H) Ar(H) Y 1
W(H) = ; n(H) = Y ; 0,175 = ; Y = 10; n(H) = 10
Mr(СхНу) 58
Следовательно, формула углеводорода: С4H10 - бутан.
№5. Установите формулу кристаллогидрата MnCl2, если известно, что при его обезвоживании массовая доля сухого остатка составила 63,63% от массы кристаллогидрата [10].
Методика решения:
Д ано: 1. Процесс обезвоживания кристаллогидрата
MnCl2 Х H2O можно выразить следующей схемой:
W (MnCl2) = 63,63% t
MnCl2 Х H2O MnCl2 + Х H2O
MnCl2 Х H2O - ?
Сухой остаток составит безводная соль MnCl2 , массовая доля которого 63,63%.
-
Выразим величину массовой доли сухого остатка:
Mr(MnCl2)
W(MnCl2) = ;
Mr(MnCl2 Х H2O)
-
Рассчитаем относительные молекулярные массы безводной и водной солей:
Mr(MnCl2) = 55 + 2 35,5 = 126
Mr(MnCl2 Х H2O) = 126 + 18X
-
Подставим, найденные величины в формулу массовой доли и определим значение Х:
126
0,6363 = ; 80,17 + 11,45 X = 126; 11,45 X = 45,83; X = 4 .
126 + 18 Х
Следовательно, формула кристаллогидрата: MnCl2 4H2O
№6. Массовая доля серебра в соли предельной одноосновной органической кислоты составляет 70,59%. Написать молекулярную формулу кислоты, если известно, что она состоит из углерода, водорода и кислорода [11].
Методика решения:
Д ано: Общая формула соли предельной одноосновной орга-
W(Ag) = 70,59% нической кислоты имеет следующий вид:
C n H2n+1 COOH - ? C n H2n+1 COOAg
-
Выразим массовую долю серебра в общем виде:
n(Ag) Ar(Ag)
W(Ag) = ;
Mr(C n H2n+1 COOAg)
-
По формуле рассчитаем относительную молекулярную массу соли:
Mr(C n H2n+1 COOAg) = 12n + 2n + 1 +12 + 2 16 + 108 = 14n + 153 .
-
Сведем данные в формулу массовой доли:
1 108
0,7059 = ; 9,88n + 108 = 108; n=0
14n + 153
Следовательно: 14n – превращается в 0 и форму соли HCOOAg, а формула кислоты HCOOH .
Часть 2. Место эксперимента и его роль в развитии мышления
школьников.
Одним из важнейших словесно – наглядных и словесно – наглядно – практических методов обучения является химический эксперимент. Он играет особую роль в обучении химии. Химический эксперимент знакомит учащихся не только с самими явлениями, но и методами химической науки. Он помогает вызвать интерес к предмету, научить наблюдать процессы, освоить приемы работы, сформировать практические навыки и умения.
Следует отметить, что проблема химического эксперимента в методике обстоятельно исследована. Большой вклад в нее внесли такие ученые как В.Н. Верховский, В.В. Фельдт, К.Я. Парменов, В.В. Левченко, В.С. Полосин, Д.М. Кирюшкин, Л.А. Цветков и другие.
К.Я. Парменов[13] не только уделял внимание технике эксперимента, но и методике его включения в учебный процесс. Он отмечал, что при провидении
демонстрационного эксперимента необходимо подготовить учащихся к наблюдению опыта и умело руководить этими наблюдениями. Особенно детально разработана эта проблема В.С. Полосиным [14,15]. Он исследовал эффективность различных способов приложения химического эксперимента, разработал методику комплексного использования химического эксперимента в сочетании с другими средствами обучения.
Химический эксперимент можно разделить на два вида: демонстрационный и ученический. Демонстрационный эксперимент относится к словесно – наглядным методам обучения.
Демонстрационным называют эксперимент, который проводится в классе учителем, лаборантом или иногда одним из учащихся [16].
Демонстрационный эксперимент, проводится в соответствии с государственной программой по химии для средней школы, по каждой конкретной изучаемой теме курса.