material (708409), страница 2
Текст из файла (страница 2)
М
еханическая прочность. У слоистых пластиков, так же как и у металлов, но в гораздо большей степени, наблюдается зависимость механической прочности от времени приложения механической нагрузки.
Зависимость разрушающих напряжений при изгибе слоистых пластиков от времени приложения механического напряжения.
1 – гетинакс I;
2 – стеклотекстолит СТ;
3 – стеклотекстолит СТЭФ
Аналогично металлам, разрушение слоистых пластиков при приложении повторно-переменных напряжений можно объяснить тем, что в результате внутреннего трения в материале возникают и постепенно расширяются трещины, ослабляющие его вплоть до разрушения. Так, многократное приложение нагрузки, составляющей всего 75% предела прочности при растяжении в течение 20 с, вызвало следующее изменение механических свойств гетинакса:
| Характер приложения механического напряжения | Предел прочности при растяжении, % к исходному |
| Исходное состояние | 100 |
| После пятидесятого приложения нагрузки | 92 |
| После сотого приложения нагрузки | 85 |
Для оценки материалов при циклических нагружениях пользуются показателем предела выносливости, который показывает максимальное напряжение, при котором материал выдерживает приблизительно 10 млн. повторных циклов без разрушения. Ниже приводятся ориентировочные данные о пределах выносливости некоторых слоистых пластиков.
| Вид нагрузки | Предел выносливости для различных слоистых пластиков, МПа | ||
| стеклотекстолит | гетинакс | текстолит | |
| Изгиб | 60 | 35-40 | 27.5-30 |
| Растяжение и сжатие | - | 58 | 39 |
Предел выносливости слоистых пластиков зависит от содержания связующего. При этом увеличение содержания смолы, например, в гетинаксе, с 40% до 50% уменьшает его предел выносливости примерно на 20%
Влияние нагревания. Механические свойства большинства видов слоистых пластиков довольно сильно изменяются даже при небольшом повышении температуры.
В
лияние температуры испытания на предел прочности при растяжении
1 – гетинакс I стеклотекстолит СТ
2 – текстолит А
З
ависимость предела прочности слоистых пластиков при сжатии перпендикулярно слоям от температуры
1 – стеклотекстолит СТ-ЭТФ
2 – стеклотекстолит СТЭФ
3 – стеклотекстолит СТ
4 – гетинакс I
5 – текстолит А
Как видно из графиков, понижение прочности у различного вида слоистых пластиков происходит в неодинаковой степени и зависит от вида как применяемого связующего, так и наполнителя.
Длительное нагревание слоистых пластиков приводит в конечном счёте к довольно большому снижению их механических свойств.
Зависимость предела прочности при статическом изгибе слоистых пластиков от времени старения при температуре 160С (измерения при 20С)
1 – стеклотекстолит СТ
2 – гетинакс I
Как видно из графика, некоторое превышение предела прочности при статическом изгибе гетинакса после первого месяца нагревания следует объяснить процессом увеличения степени отверждения связующего, которое при прессовании гетинакса этой марки, по-видимому, прошло не до конца.
Однако нагревание слоистых пластиков при недопустимо высоких температурах может привести к резкой деструкции либо связующего, либо наполнителя. Так, при нагревании слоистых пластиков, изготовленных с применением фенолформальдегидных связующих, начиная примерно с 200C появляется науглероживание этих связующих, которое усиливается при повышении температуры до 300-400С. В то же время при нагревании слоистых пластиков, изготовленных с применением эпоксиднофенолформальдегидного связующего, при упомянутых температурах начинается сильная деструкция связующего с возгонкой продуктов деструкции без существенного образования продуктов обугливания. Если в первом случае, даже при полном обугливании связующего, ещё остаётся ощутимая механическая прочность за счёт оставшегося кокса, способного в некоторой степени связывать между собой слои наполнителя, то во втором случае практически наступает полное разрушение пластика.
Помимо падения жёсткости слоистых пластиков по мере увеличения температуры нагревания, также ухудшаются их электрические свойства, что видно из графиков.
Зависимость кратковременной электрической прочности слоистых пластиков от температуры испытания
1 – стеклотекстолит СТ
2 – стеклотекстолит СТК
3 – гетинакс I
Однако снижение такого показателя электрических свойств как электрическая прочность, происходит и после теплового старения слоистых пластиков. Из приведённых ниже графиков следует, что если даже кратковременный нагрев до соответствующей температуры может не влиять на электрическую прочность слоистого пластика, то тепловое старение при такой же температуре приводит к снижению его электрической прочности.
Влияние теплового старения Зависимость электрической прочности
на кратковременную электрическую гетинакса I и стеклотекстолита СТ
прочность стеклотекстолита СТК от времени старения при 160С
(температура испытания 20С)
1 – стеклотекстолит СТ
2 – гетинакс I
Влияние увлажнения. Большинство слоистых пластиков обладает сравнительно высоко влагопоглощаемостью. Исключение составляют такие пластики как текстолит ЛТ и стеклотекстолит СТВЭ, изготовленные с применением негидрофильных наполнителей, у которых водопоглощаемость оказывается и существенно не увеличивается при продолжительном увлажнении. У всех других видов слоистых пластиков с течением времени водопоголощение увеличивается до насыщения. Одновременно с увеличением водопоглощения изменяются и размеры самого пластика.
Зависимость водопоглощения и изменения размеров слоистых пластиков от времени пребывания в воде.
А – водопоглощение Б – изменение размеров
1 – текстолит Вч 1 – длины текстолита Вч
2 – стеклотекстолит СТ 2 – длины стеклотекстолита СТ
3 – стеклотекстолит СТ-1 3 – длины стеклотекстолита СТ-1
4 – толщины текстолита Вч
5 – толщины стеклотекстолита СТ
6 – толщины стеклотекстолита СТ-1
Из сравнения графиков следует, что водонасыщение у стеклотекстолитов наступает гораздо раньше, чем у гетинакса и текстолита типа Вч, и что после наступления водонасыщения прекращается и изменение размеров слоистых пластиков. После пребывания слоистых пластиков в воде их механическая прочность несколько падает и, например для отдельных видов стеклотекстолитов это падение достигает 20-25%. Однако механическая прочность таких стеклотекстолитов восстанавливается после сушки при умеренной температуре (около 105С). Снижение механических свойств наблюдается у слоистых пластиков, способных к существенному влагопоглощению после пребывания при высокой относительной влажности воздуха. Так, у стеклотекстолита марки СТЭФ, после его пребывания в течение 6 мес. при относительной влажности воздуха 98-100%наблюдается падение предела прочности при растяжении на 5%, удельной ударной вязкости на 7% и предела прочности при изгибе даже на 50%.
Также увлажнение в заметной степени ухудшает электрические характеристики слоистых пластиков. При этом очень чувствительными показателями оказываются tg и сопротивление изоляции, что видно из графиков.
Зависимость tg (при 50 Гц) от времени увлажнения слоистых пластиков при относительной влажности воздуха 98% и температуре 35С
1 – стеклотекстолит ЛТ
2 – стеклотекстолит ЛТВЭ
3 – стеклотекстолит СТЭФ
4 – гетинакс IV
5 – стеклотекстолит СТ
6 – гетинакс I
При этом сушка слоистых пластиков после увлажнения не всегда приводит к восстановлению электрических свойств до исходного состояния. Так после увлажнения стеклотекстолита СТЭФ при относительной влажности 95-98% и температуре 30С, tg его возрастает с 3 до 23-26%. Однако даже после продолжительной сушки при 160С tg остаётся выше 10-15%. В меньшей степени ухудшается удельное объёмное сопротивление слоистых пластиков.
Зависимость удельного объёмного сопротивления слоистых пластиков от времени увлажнения при относительной влажности воздуха 95-98% и температуре 35С
1 – гетинакс I
2 – гетинакс IV
3 – стеклотекстолит СТВЭ
4 – стеклотекстолит СТ
5 – стеклотекстолит СТЭФ
6 – текстолит А
7 – текстолит ЛТ
Влияние времени приложения электрического напряжения. Электрическая прочность слоистых пластиков зависит от продолжительности приложения электрического напряжения. Если причиной понижения механической прочности являются релаксационные процессы, то продолжительное действие электрического напряжения, по-видимому, связано с вызываемыми им процессами ионизации воздуха в порах слоистого пластика и в конечном счёте со сквозным расширением этих пор за счёт ударов ионов воздуха в стенки этих пор. После появления в слоистом пластике за счёт длительного приложения электрического напряжения сквозных пор, наполненных ионизированным воздухом, происходит ионный элестрический пробой материала. Однако если слоистый пластик обладает повышенным значением tg , то раньше, чем наступит ионный пробой, может вследствие очень сильного разогревания и обугливания слоистого пластика произойти тепловой пробой. Поэтому электрическая прочность большинства слоистых пластиков при высокой частоте, когда степень ионизаци воздуха увеличивается, оказывается существенно более низкой, чем при токе промышленной частоты. Так, если гетинакс, имеющий tg около 0.1, при температуре 90С выдерживает в течение 1 мин вдольслоёв при частоте 50 Гц и расстоянии между электродами 50 мм напряжение в 55 кВ, то при частоте тока 100 кГц он выдерживает только 25 кВ.
Зависимость электрической прочности слоистых пластиков перпендикулярно слоям от времени приложения электрического напряжения (частотой 50 Гц)
1 – стеклотекстолит СТЭФ при 20С
2 – то же при 100С
3 – гетинакс I при 20С
4 – то же при 100С
5 – стеклотекстолит СТ при 20С
















