109058 (707868), страница 5
Текст из файла (страница 5)
(Отметим, что у птиц и у некоторых насекомых наблюдается обратная картина: гетерогаметны самки, а самцы гомогаметны.) Соотношение полов рассматривается более подробно в разд. 3.7. Половые хромосомы X и Y морфологически отличаются от остальных хромосом (аутосом) и друг от друга. Поэтому можно ожидать, что они содержат уникальные аллели, которые не могут переходить из одной хромосомы в другую в результате кроссинговера. Это может привести к отклонениям от предсказаний Менделя; явление это известно под названием сцепления с полом. Например, аллель, определяющий красный цвет глаз У Дрозофилы, о котором говорилось выше, как и аллель белого Цвета глаз, локализован в Х-хромосомах. В Y-хромосомах этих аллелей нет. Красный цвет глаз доминирует над белым. Когда Морган скрещивал красноглазых самок с белоглазыми самцами, все потомство fj оказалось красноглазым. При скрещивании красноглазых самцов и самок из fi он получил красноглазых и белоглазых мух в соотношении 3:1, но все белоглазые мухи были мужского пола. Отношение красноглазых самок к красноглазым самцам составляло 2:1. Если, заменив обозначения, принятые на стр. 27, обозначить аллель красных глаз через Xw, а аллель белых глаз — через Xw, то нетрудно дать объяснение! наблюдаемым результатам:
Рациональное объяснение этого дает рис. 2.5. Вообще чем больше генов участвует в определении данного признака, тем более непрерывна изменчивость по этому признаку.
Такая ассоциация генов с морфологически различными хромосомами служит очень хорошим подтверждением того, что гены организованы в хромосомы.
3. Непрерывно изменяющиеся признаки. Мендель сконцентрировал внимание на признаках, резко отличающихся один от другого, однако большинству признаков свойственна непрерывная изменчивость. Так, например, организмы по общим размерам обычно не распадаются на дискретные классы, а образуют непрерывный ряд от минимальных до максимальных для данной группы размеров. Кроме того, чаще всего особи распределяются по данному признаку таким образом, что большая их часть концентрируется вблизи среднего значения признака, а по обе стороны от него частота постепенно сходит на нет (см., например, рис. 2.4). В течение некоторого времени полагали, что эта изменчивость выходит за рамки менделевской генетики; У. Ф. Уэлдон (W. F. Weldon) примерно в 1900 г. даже подверг критике данные самого Менделя, поскольку при более тщательном анализе оказалось, что большая часть так называемых дискретных признаков горошка подвержена значительной изменчивости (например, степень морщинистости семян и интенсивность их зеленой окраски). Однако в 1909 г. X. Нильсен-Эле (Н. Nilssen-Ehle) показал, что менделевские факторы могут контролировать количественные признаки, если один такой признак детерминируется большим числом генов (полигены), каждый из которых обладает небольшим, аддитивным действием (см. стр. 26).
Рис. 2.4. Частотное распределение величины помета у мышей и числа щетинок на вентральной поверхности брюшка у дрозофилы. В обоих случаях кривая распределения приближается к нормальной (гауссовой) кривой. (Futuyama D. J., Evolutionary Biology, Sinauer Associates, Massachusetts, 1979.)
Помимо генетической основы изменчивости признаков существует еще и влияние окружающих условий. Например, на общие размеры животного или растения решающее влияние оказывают те условия, в которых оно развивается. Возможно, все признаки организма представляют собой продукт воздействия генетических и средовых факторов, так что нормальные распределения, подобные изображенным на рис. 2.4, — результат сочетания этих факторов. Передается по наследству только та компонента этой изменчивости, которая обусловлена генами; ее выражают как Долю общей изменчивости и называют наследуемостью (часто обозначается как h2). Измерение наследуемости имеет важное значение для селекционеров и животноводов; ее можно определить по соотношению между признаками родительских особей и потомков, выращенных в тех же условиях.
Рис. 2.5. Схема, иллюстрирующая возникновение фенотипической изменчивости при корпускулярной наследственности.
Допустим, что «сила» данного признака зависит от соотношения доминантных и рецессивных аллелей. В таком случае, чем больше число расщепляющихся локусов, определяющих этот признак, тем больше число возможных сочетаний доминантных и рецессивных признаков, а тем самым и число возможных фенотипических классов. (Strickberger M. W., Genetics, Macmillan, New York, 1968.)
Вильгельм Людвиг Иогансен (W. L. Johansen), специалист по генетике растений, был одним из первых ученых, обратив- J ших внимание (примерно в 1900 г.) на то, что каждый организм— продукт среды, в которой он обитает, и генов, которые он содержит. На этой основе Иогансен различал фенотип, то есть, организм, который мы видим, и генотип — совокупность содержащихся в нем генов, и это проведенное им разграничение сохранило свое важное значение по сей день.
4. Мейотшеский драйв. Аллели, кодирующие один и тот же признак, находятся в отдельных хромосомах (гомологичных хромосомах), так что каждая клетка данной родительской особи содержит обычно некоторое число пар гомологичных хромосом (диплоидное состояние). При формировании гамет гомологичные-хромосомы должны быть отделены одна от другой, с тем чтобы каждая гамета в конечном итоге получила по одной хромосоме от каждой пары (гаплоидное состояние). Этот процесс разделения известен под названием мейоза и лежит в основе первого закона Менделя — закона расщепления. Мейоз обеспечивает формирование гетерозиготной особью одинакового числа гамет, содержащих разные аллели. Однако некоторые процессы, детерминируемые генами, способны нарушить эти результаты. Такие процессы могут быть обусловлены событиями, как предшествующими мейозу, так и следующими за ним; и те и другие приводят к так называемому мейотическому драйву. Обзор по этой проблеме см. (16).
Один интересный пример связан с так называемыми генами SD (segregation distorter), обнаруженными у дрозофилы (5). В этом случае гомологичные хромосомы конъюгируют, но гены SD оказывают на своих партнеров такое воздействие, что те в дальнейшем образуют нежизнеспособные сперматозоиды. Существование подобных SD-генов проявляется более четко в тех случаях, когда они редки, потому что при этом у них больше шансов оказаться в гетерозиготном состоянии. По мере того как они становятся более обычными, конъюгация между ними происходит чаще и они разрушаются. Поэтому следует ожидать, что гены SD сбалансированы в популяциях на довольно низких уровнях.
2.2. Хромосомные и химические основы наследственности.
2.2.1. Цитологические основы наследственности.
За последние три десятилетия XIX в. в изучении клеточной основы жизни были достигнуты выдающиеся успехи. Ряд исследователей, главным образом немецких, открыли, что гаметы представляют собой клетки и что клетка — это не просто комочек однородного вещества, а некая структура, состоящая из ядра и цитоплазмы. Благодаря усовершенствованию микроскопов и разработке специальных методов окрашивания стало возможным более детально рассмотреть ядро. Оказалось, что оно также неоднородно: в нем были обнаружены нитевидные структуры, состоящие из вещества, названного хроматином; соответственно структуры эти получили название хромосом. Мнение о том, что хромосомы — подходящие кандидаты на роль материальных носителей наследственности, впервые высказал Август Вейсман (August Weismann, 1834—1914). Он представлял себе наследственность как передачу материала — того, что он называл зародышевой плазмой, — от родителей потомкам и предполагал, что зародышевая плазма, сохраняя непрерывность и обособленность, проходит через весь онтогенез данного индивидуума и «выплескивается» в следующее поколение, покидая сому — свое прежнее тело. Эти взгляды Вейсмана были основаны на его наблюдениях, которые показывали, что у многих животных образование половых клеток и их обособление от соматических тканей происходит на очень ранней стадии эмбрионального развития. Отсюда проводившееся им разграничение между зародышевой плазмой и сомой. В своей «Эволюционной теории», вышедшей в 1903 г., Вейсман еще более сузил границы зародышевой плазмы и свел ее к ядру половых клеток, а затем — к хромосомам и хроматину (впервые эти термины были предложены В. Вальдейером в 1888 г.). Он это сделал потому, что, судя по гистологическим данным, хромосомы вели себя именно так, как им следовало себя вести, если бы они представляли собой вещество наследственности: они удваивались и разделялись на две равные группы при делении соматических клеток; число их уменьшалось вдвое при образовании гамет, предшествующем смешиванию мужского и женского вкладов во время оплодотворения. В настоящее время мы называем эти два процесса соответственно митозом и мейозом.
Итак, на основе всех полученных данных менделевские факторы получили название генов (термин, введенный В. Л. Иоган-сеном в 1888 г.), которые, как предположили исследователи, находятся в хромосомах. Эта теория, конечно, коренным образом отличалась от теории слитной наследственности, которой придерживался Дарвин. Зародышевая линия была отделена от сомы, а тем самым и от приобретенных признаков. Гены дискретны и не сливаются. Кроме того, хромосомная теория позволяла лучше осмыслить данные некоторых экспериментов по скрещиванию, например данные Моргана по сцеплению у дрозофилы (см. разд. 2.1.2).
2.2.2. Химические основы наследственности.
Локализация генов в хромосомах была установлена, однако не все биологи были так уверены, как Вейсман, в их чисто химической природе. Сам Т. Г. Морган в своей книге «Механизм менделевской наследственности» (Т. Н. Morgan, A. H. Sturte-vant, H. J. Muller, С. В. Bridges, Mechanism of Mendelian Heredity, H. Holt and Co., 1915) писал: «Предположение, что частицы хроматина, неотличимые одна от другой и почти гомогенные при исследовании любыми известными методами, могут в силу своей материальной природы наделять всеми свойствами жизни, превосходит воображение даже самого убежденного материалиста».
Создание разнообразия, или, иными словами, генетической информации, из единообразия —вот в чем заключался главный вопрос, а ответ на него состоял в том, что хроматин оказался не таким гомогенным, каким он представлялся. Данные хими-деского анализа показали, что хроматин — это нуклеиновая кислота, состоящая из повторяющихся субъединиц (нуклеоти-дов), соединенных друг с другом связями, в образовании которых участвуют остатки либо рибозы (рибонуклеиновые кислоты, РНК), либо дезоксирибозы (дезоксирибонуклеиновые кислоты, ДНК).
Крупнейший шаг вперед в этой области был сделан в середине пятидесятых годов нашего века, когда Дж. Д. Уотсон (James D. Watson) и Фрэнсис Крик (Francis Crick) расшифровали строение ДНК на основе химических данных в сочетании с рентгеновскими «снимками» ее молекулы. Каждая нуклеиновая кислота состоит из двух цепей, соединенных химическими связями, так что структура в целом имеет вид веревочной лестницы. Перекладинами этой лестницы служат связи между нуклеотидами, причем нуклеотиды расположены таким образом, что против определенной большой единицы может находиться только одна определенная малая единица. Поэтому говорят, что две стороны лестницы комплементарны. Эта лестница свернута наподобие гибкого электрического провода, образуя ныне знаменитую двойную спираль (см. рис. 2.6).
Вслед за созданием модели структуры ДНК был высказан ряд соображений относительно ее функций. Во-первых, последовательность оснований в молекуле ДНК может быть различной и в этой последовательности может быть закодирована генетическая информация. Хроматин оказался негомогенным. Во-вторых, комплементарность означает, что если отделить две стороны «веревочной лестницы» одну от другой, то каждая из них могла бы служить матрицей для построения другой. Следовательно, информация может точно и безошибочно реплицироваться и передаваться от одной клетки другой и от родителей потомкам (рис. 2,6,Г).
Рис. 2.7. Транскрибирование ДНК в мРНК и трансляция в белки. Трансляция происходит на субклеточных органеллах — рибосомах; молекулы транспортной РНК (тРНК) выбирают из клеточного фонда аминокислот нужную аминокислоту и переносят ее на соответствующее место на матрице. Образующийся таким образом белок может затем выполнять в клетке структурные или ферментативные функции. (Calow P., Biological Machines, Edward Arnold Publ., London, 1976.)
Наконец, спиральная структура означает, что эта жизненно важная генетическая информация защищена от превратностей внешнего мира. Время от времени в процессе репликации возникают случайные нарушения, ведущие к тому, что в классической генетике называли мутациями. Подобные события должны быть редкими и могут вызываться внешними факторами (например, облучением), но они не направлены на удовлетворение каких-либо определенных «потребностей».
Рис. 2.6. Строение ДНК. А. Нуклеотиды (В), соединенные в цепь. Б. Комплементарные цепи, образующие «веревочную лестницу» при помощи водородных связей (прерывистые линии). В, «Веревочная лестница», свернутая в двойную спираль. Г. Репликация: цепи раскручиваются, и каждая из них служит матрицей для образования комплементарной цепи.
Все эти положения, разработанные Уотсоном и Криком, оказались в основном верными и вызвали бурное развитие исследований по молекулярной генетике. Было известно, что ядро и нуклеиновые кислоты играют ключевую роль в синтезе белка, а поскольку белки принимают важнейшее и непосредственное участие в построении клетки (в виде строительных блоков) и в регуляции ее функций (в виде ферментов), то нетрудно видеть, каким образом нуклеиновые кислоты могли бы определять признаки организма. Нуклеиновые кислоты состоят из повторяющихся субъединиц — нуклеотидов, а белки состоят из аминокислот; поэтому можно было допустить, что последовательность нуклеотидов кодирует последовательность аминокислот. Поскольку, однако, аминокислот различных типов в белках больше, чем нуклеотидов в нуклеиновых кислотах (соотношение их составляет примерно 5:1), одна аминокислота не может кодироваться только одним нуклеотидом. Теоретически было нетрудно показать, что лишь группы из трех нуклеотидов (триплеты) могут обеспечить достаточное разнообразие (43, или 64 альтернативные комбинации), а вскоре существование три-плетного кода было установлено экспериментально. У эукариот перенос генетической информации при синтезе белка происходит в два этапа: от дезоксирибонуклеиновых кислот (ДНК) к рибонуклеиновым кислотам (РНК)—процесс, известный под названием транскрипции, и от РНК к белкам — трансляция. Упрощенная схема переноса генетической информации представлена на рис. 2.7.
2.2.3. Связь классической и молекулярной генетики.
Какая часть ДНК или какое ее количество эквивалентно одному менделевскому гену? Задать такой вопрос естественно, но ответить на него невозможно. Во-первых, следует отметить, что в нуклеиновых кислотах закодированы не форма носа, цвет волос или другие подобные признаки, а молекулы, необходимые для создания и поддержания этих признаков! Во-вторых, с точки зрения молекулярной конституции организма подразделение его на признаки, принятое в генетике, весьма произвольно. Например, какая-либо одна молекула, образованная одной частью ДНК, может содержаться в носе, волосах и глазе. Это с неизбежностью привело к тому, что концепцию гена оказалось необходимым пересмотреть, определив его в терминах дискретных частей генома, то есть тех его частей, которые продуцируют конкретные белки. Однако не все гены кодируют синтез белков; некоторые из них регулируют активность других генов, а поэтому первые получили название структурных генов, а вторые — генов-регуляторов. Примерно 30 — 70% ДНК млекопитающих представлено повторяющимися участками, и если они вообще несут какую-либо функцию, то, вероятно, эта функция регуляторная (см., однако, разд. 3.8). Наконец, начинают появляться данные о том, что участки ДНК, кодирующие определенные белки, не обязательно физически дискретны и статичны. Гены и фрагменты генов могут перемещаться в молекуле ДНК, и такие подвижные гены были обнаружены как у микроорганизмов, так и у эукариот. Менделевская концепция физически дискретных (корпускулярных) генов становится менее определенной.
Связь между ДНК, менделевскими факторами и признаками организма не столь проста, как представлялось прежде, но под наблюдения классических менделистов можно тем не менее подвести химическую основу. Установленные ранее явления доми-нантности и рецессивности рассматриваются теперь в таких аспектах, что можно без труда показать связь этих явлений с определенными химическими реакциями (разд. 2.1.2). Эпистаз (разд. 2.1.2) можно интерпретировать в понятиях взаимодействующих генов и генных продуктов. Нетрудно, например, представить себе, как может происходить химическое воздействие на экспрессию на уровне как самого гена, так и любого из ряда последовательных генных продуктов химическими факторами, содержащимися во внутренней и во внешней среде. Наконец, мутацию можно интерпретировать как ошибку в репликации ДНК. Такая ошибка может ограничиваться замещением одного нукле-отида другим (точковая мутация) или же выражаться в структурной перестройке целых хромосом (хромосомные мутации, в том числе нехватки, удвоения, транслокации и инверсии).