108898 (707797), страница 2

Файл №707797 108898 (Математическое моделирование естествознания) 2 страница108898 (707797) страница 22016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Современное естествознание характеризуется лавинообразным накоплением нового фактического материала и возникновением множества новых дисциплин на стыках традиционных. Резкое удорожание науки, особенно экспериментальной. Как следствие - возрастание роли теоретических исследований, направляющих работу экспериментаторов в области, где обнаружение новых явлений более вероятно. формулировка новых эвристических требований к создаваемым теориям: красоты, простоты, внутренней непротиворечивости, экспериментальной проверяемости, соответствия (преемственности). Роль эксперимента, как критерия истинности знания, сохраняется, но признается , что само понятие истинности не имеет абсолютного характера: утверждения, истинные при определенных условиях, при выходе за границы, в рамках которых проводилась экспериментальная проверка, могут оказаться приближенными и даже ложными. Современное естествознание утратило присущую классическим знаниям простоту и наглядность. Это произошло главным образом из-за того, что интересы современных исследователей из традиционных для классической науки областей переместились туда, где обычный “житейский” опыт и знания об объектах и происходящих с ними явлениях в большинстве случаев отсутствуют.

После триумфа классической механики Ньютона химия в лице Лавуазье, положившего начало систематическому применению весов, встала на количественный путь, а вслед за ней и другие естественные науки. “Таково первое основание, по которому физик не может обойтись без математики; она дает ему единственный язык, на котором он в состоянии изъясняться (А.Пуанкаре.Цит.соч. - С.220)”.

Дифференциальное и интегральное исчисление хорошо подходит для описания изменения скоростей движений, а вероятностные методы - для необратимости и создания нового. Все можно описать количественно, и тем не менее, остается проблемой отношение математики к реальности. По мнению одних методологов, чистая математика и логика используют доказательства, но не дают нам никакой информации о мире ( почему Пуанкаре считал, что законы природы конвенциональны), а только разрабатывают средства его описания. Однако, еще Аристотель писал, что число есть промежуточное между частным предметом и идеей, а Галилей полагал, что Книга Природы написана языком математики.

Не имея непосредственного отношения к реальности, математика не только описывает эту реальность, но и позволяет, как в уравнениях Максвелла, делать новые интересные и неожиданные выводы о реальности из теории, которая представлена в математической форме. Как же объяснить непостижимую истинность математики и ее пригодность для естествознания? Может все дело в том, что “ механизм математического творчества, например, не отличается существенно от механизма какого бы то ни было иного творчества”( А.Пуанкаре.Цит.соч.-С.285)? Или более пригодны более сложные, системные объяснения?

По мнению некоторых методологов, законы природы не сводятся к написанным на бумаге математическим соотношениям. Их надо понимать как любой вид организованности идеальных прообразов вещей, или пси-функций. Есть три вида организованности: простейший - числовые соотношения; более сложный - ритмика 1-го порядка, изучаемая математической теорией групп; самый сложный - ритмика 2-го порядка - “слово”. Два первых вида организованности наполняют Вселенную мерой и гармонией, третий - смыслом. В рамках этого объяснения математика занимает свое особое место в познании.

Работа над любой математической моделью начинается со сбора и анализа фактического материала. Определяются цели моделирования. Выделяются главные черты изучаемого объекта или явления. Вводятся формализованные характеристики. Принимаются правила работы с ними. В результате возникает математический объект, который и называется математической моделью. Разрабатываются методы математического анализа модели, которыми она исследуется. Полученные результаты математического моделирования интерпретируются в рамках исходного фактического материала, что позволяет оценить степень адекватности модели. Результаты моделирования не должны противоречить выделенным ранее ключевым экспериментальным фактам. Одновременно, модель не может объяснить все стороны изучаемого объекта или явления.

Хорошая модель, кроме объяснения известных, должна давать возможность предсказывать новые свойства. Математическое моделирование широко используется там, где экспериментальные исследования трудоемки и дорогостоящи, или вообще невозможны (например, в изучении социальных явлений).

Кроме задачи о прогнозе, математическое моделирование помогает классифицировать и систематизировать фактический материал, увидеть существующие связи в мозаике фактов. Это вытекает из того, что модель является специфическим -ярким и выразительным языком, предназначенным для описания для описания изучаемого объекта или явления.

Мир математических моделей разнообразен. Существуют различные схемы их классификации. Однако, каждая модель конкретна и предназначена для описания достаточно узкого круга объектов и явлений. Модели сильно отличаются друг от друга не только предметными областями, но математической терминологией, а также математическими методами их исследования.

Предпочтение отдается более простым моделям. Отметим, что “простота” (иногда в ущерб точности)-один из принципов, о котором всегда нужно помнить при разработке математической модели.

Математические модели нейронных систем

Изучение нейронных систем - одно из самых романтических направлений научных исследований, поскольку нейронные системы присущи как человеку, так и животным. Самая совершенная интеллектуальная система - человеческий мозг. Никакой компьютер в настоящее время не может воспроизвести ее феномен. Более того, даже поведение таких относительно простых организмов, как кальмары, в настоящее время в полной мере невозможно смоделировать на компьютере. Законы функционирования отдельных элементов нервной системы в целом не плохо изучены. Однако, законы функционирования ассоциаций нельзя свести законам поведения отдельных элементов. На самом деле об эффектах, обусловленных коллективным поведением нейронных популяций, известно мало. Понятны некоторые самые общие принципы. Например, нейронные системы способны адаптироваться к меняющимся условиям, т.е. им не нужны жесткие программы. Одновременно, последние, хотя бы в форме рефлексов, присутствуют в нервной системе. Экспериментальное изучение эффектов коллективного поведения нейронных систем затруднено. Эти системы слишком сложно устроены. Так в мозге человека и животных каждый нейрон находится под воздействием тысяч других нейронов и, соответственно, влияет на тысячи нейронов. Всего же по современным оценкам в мозге порядка миллиарда нейронов. Огромное значение имеет математическое моделирование, как метод косвенного исследования. Оно помогает понять, какие процессы могут происходить в нейронных популяциях. Затем уже можно пытаться обнаружить соответствующие явления экспериментально. Модели различаются в зависимости от целей моделирования. Некоторые модели достаточно адекватно в деталях описывают поведение отдельных нейронов и помогают понять закономерности их функционирования. Они же являются базовыми для моделей малых нейронных популяций. Для описания больших популяций используют упрощенные модели нейронов. Упор делается на изучение эффектов коллективного поведения. Результаты моделирования используются как в нейрофизиологии, так и в технике. Уже сейчас выпускаются нейронные платы. Пока их возможности невелики. Они используются, например, в обработке изображений, а также при решении некоторых экономических задач. Следует отметить, что сейчас все задачи, которые можно решить с помощью нейронных плат, в принципе можно решить и с помощью обычного компьютера. Однако, нейронные платы увеличивают быстродействие. Перспективным считается направление, связанное с использованием нейронной техники для проведения вычислений. Ряд вычислений на нейроподобных системах может проводиться нетрадиционным способом -путем имитации явлений.

Возбудимые системы

Нервная клетка, или нейрон является структурной единицей нервной системы живых организмов. Индивидуальные границы нейрона, как и любой другой клетки, определяются клеточной мембраной. В любой клетке существует разность потенциалов между содержимым клетки -цитоплазмой и внеклеточной средой. Мембрана поляризована. Ее внутренняя поверхность заряжена отрицательно по отношению к внешней. Разность потенциалов называют мембранным потенциалом. Его величина составляет несколько десятков милливольт. Причина возникновения мембранного потенциала -неравенство концентраций ионов в цитоплазме и в тканевой жидкости. Это обусловлено тем, что клеточные мембраны обладают избирательной проницаемостью для различных ионов.

Живые организмы, все клетки и, в частности, нейроны обладают раздражимостью -способностью реагировать на различного рода воздействия. Реакции носят сложный, комплексный характер, но всегда сопровождаются изменением электрического заряда мембраны. Воздействия, вызывающие реакции, называются раздражителями, или стимулами. Хотя живые организмы состоят из клеток, реакции организма в целом не сводятся к реакциям отдельных клеток. Напомним универсальное правило: закономерности системы не могут быть сведены к закономерностям отдельных элементов.

Нервные клетки и некоторые ткани (мышечная, железистая) специально приспособлены к осуществлению быстрых реакций на раздражение. Такие клетки и ткани называются возбудимыми, а их реакция -возбудимостью. Клетки при возбуждении переходят из состояния физиологического покоя в состояние активности. В частности, нервная клетка генерирует один, или несколько электрических импульсов. Это связано с тем, что при возбуждении проницаемость мембраны для ионов резко увеличивается. Возникают ионные токи, что естественно приводит к изменению разности потенциалов на поверхности мембраны. Это изменение мембранного потенциала называется потенциалом действия. Генерируемые нервными клетками импульсы также называются спайками. Группы, тесно следующих друг за другом спайков, называются пачками или берстами. Амплитуды спайков относительно стабильны для каждого типа нейронов, поэтому часто говорят, что нейрон реагирует на раздражение по закону “все, или ничего”.

Нервное возбуждение - распространяющийся процесс. Возникнув в одном, или нескольких нейронах, оно передается другим клеткам. Проведение возбуждения обусловлено тем, что потенциал действия, возникнув в одной клетке, становится раздражителем для связанных с ней клеток. То же самое относится к другим возбудимым тканям, например, к сердечной мышце. Согласно наиболее распространенной в настоящее время точки зрения считается, что “сообщения” в нервной системе передаются в виде импульсов “все, или ничего” в форме частотного кода.

Обсудим природу мембранного потенциала. Мембрана, отделяющая цитоплазму нейрона от межклеточной среды, состоит в основном из липидов -жироподобных веществ. В нее встроены белковые молекулы. Некоторые молекулы пронизывают липидный слой насквозь, а другие погружены лишь до сердцевины (своеобразные ворсинки). Некоторые белки выполняют роль каналов, осуществляющих транспорт ионов через мембрану. Другие -служат рецепторами, позволяющими нейрону реагировать на поступающие от других нейронов потенциалы действия.

Механизмы переноса ионов через мембрану делятся на два класса: пассивный и активный транспорт. Пассивный транспорт не требует затрат энергии. Он определяется двумя факторами. Диффузия способствует выравниванию концентрации растворов. Носители зарядов -ионы перемещаются под действием электрического поля. При активном транспорте за счет химической энергии, освобождающейся при окислении аминокислот, может осуществляться перенос ионов как в области с более высокой их концентрацией, так и против электрических сил.

Закономерности пассивного транспорта опираются на некоторые положения электрохимии. Как уже говорилось, мембраны биологического происхождения обладают избирательной проницаемостью. Одни ионы достаточно легко диффундируют через них. Для других ионов мембраны практически непроницаемы. Рассмотрим на примере положение об электрохимическом равновесии. Пусть в сосуд с раствором помещена полость , ограниченная мембраной, где также находится раствор . Обозначим через и концентрации раствора в сосуде и в полости. Предположим, что мембрана проницаема для ионов и непроницаема для ионов . Пусть концентрация раствора в сосуде ниже, чем в полости, т.е. . Тогда ионы калия будут переходить из полости в сосуд, поскольку диффузия стремится выровнять концентрации. В полости образуется относительный дефицит положительно заряженных ионов и она заряжается отрицательно. Точнее, отрицательный заряд сосредотачивается на внутренней поверхности мембраны. Наоборот, внешняя поверхность мембраны заряжается положительно. Электрическое поле направлено так, что диффузия положительных ионов будет затруднена. в результате при некоторой разности потенциалов между внутренней и внешней поверхностью мембраны диффузия ионов вообще прекратится. Величина называется равновесным электрохимическим потенциалом. Она вычисляется по формуле Нернста:

, (1)

где -универсальная газовая постоянная, -абсолютная температура, -число Фарадея, -заряд иона.

Пусть текущее значение мембранного потенциала. привлечем некоторые положения теории электрических цепей. Мембрана является диэлектриком (изолятором) и поэтому обладает емкостью. Ток , текущий через емкость и напряжение (оно же мембранный потенциал) связаны соотношением: , где коэффициент пропорциональности называется емкостью. Отметим, что в некотором смысле ток, текущий через мембрану, является фиктивным. Он не сопровождается переносом зарядов. Согласно закону Нернста мембрана является источником напряжения . Ток , текущий через источник напряжения , связан с напряжением на его полюсах формулой: . По закону Кирхгофа сумма токов равна нулю: . Таким образом, получаем дифференциальное уравнение:

Характеристики

Тип файла
Документ
Размер
2,5 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее