25538-1 (707527), страница 3
Текст из файла (страница 3)
После попадания под гравитационный радиус движение до центра займет по часам падающего наблюдателя время порядка Rg /с. Для черной дыры солнечной массы это время составляет 10-5 с. Момент пересечения гравитационного радиуса сопутствующий наблюдатель может установить следующим образом. Представим себе, что время от времени этот наблюдатель заставляет вспыхнуть поверхность коллапсирующего тела и измеряет, как изменяется площадь поверхности сферического фронта выходящей волны. Пересечению поверхностью тела горизонта событий соответствует момент, начиная с которого, площадь фронта от вспышки не возрастает, А уменьшается.
Остановить коллапс тела, попавшего под горизонт событий, невозможно. Для этого потребовалось бы создать такие условия, при которых частицы поверхности остановили бы свое падение и начали двигаться наружу. Это означает, что скорость их движения должна стать больше скорости света, что противоречит принципу причинности. Согласно общей теории относительности, сжатие вещества, попавшего внутрь черной дыры, продолжается до тех пор, пока его плотность не достигает бесконечно большого значения. При этом образуется сингулярность, т. е. особенность в пространстве-времени, характеризуемая формально бесконечным значением кривизны. Фактически это означает, что в окрестности таких точек нельзя пренебрегать эффектами, которые могли бы привести к модификации уравнений Эйнштейна и которые малы лишь при малых кривизнах. Подобную роль могут играть, например, квантово-гравитационные эффекты.
Картина коллапса с точки зрения удаленного наблюдателя. Удаленный наблюдатель никогда не увидит, что происходит внутри черной дыры. При подходе сжимающейся поверхности тела к гравитационному радиусу увеличивается запаздывание выходящих с поверхности тела наружу сигналов. Поэтому удаленный наблюдатель видит коллапсирующее тело как бы застывающим, а размер его быстро, по экспоненциальному закону, приближающимся к гравитационному радиусу. Выходящие лучи, испытывая возрастающее красное смещение в гравитационном поле, приходят все более и более “покрасневшими”. Мощность излучения быстро падает и за времена порядка Rg/c после сжатия коллапсирующего тела до размера порядка гравитационного радиуса, внешний наблюдатель перестает его видеть: образуется черная дыра. Эта “дыра” действительно черная. Обладая ограниченной энергией, коллапсирующее" тело до пересечения горизонта событий способно излучить на бесконечность лишь конечное число световых квантов, так что после момента выхода наружу последнего излученного кванта из черной дыры больше не выходит никакой информации. Начиная с некоторого момента, оказывается невозможной также попытка получить информацию о сколлапсировавшем теле с помощью посланной вслед этому телу ракеты. Дело в том, что когда эта ракета достигнет гравитационного радиуса, она, конечно же, не обнаружит там сколлапсировавшее тело. В этом смысле воспринимаемая внешним наблюдателем картина застывания тела у гравитационного радиуса напоминает улыбку знаменитого чеширского кота из книги Льюиса Кэрролла “Алиса в стране чудес”, которая оставалась после исчезновения самого кота.
ВРАЩАЮЩИЕСЯ И ЗАРЯЖЕННЫЕ ЧЕРНЫЕ ДЫРЫ
Вращающаяся черная дыра. Эффект Лензе—Тирринга. Вращение тела может существенно изменить ситуацию. Если скорость вращения велика, то возникающие центробежные силы способны помешать коллапсу тела, приводя, например, к его разрыву на части еще до образования черной дыры. Если масса каждой части меньше критической, то этот процесс фрагментации может вообще предотвратить образование черной дыры. К сожалению, очень трудно провести количественные расчеты в подобном случае. Следует, однако, ожидать, что вращение существенным образом изменит картину коллапса, если первоначальный угловой момент J тела превышает величину GM2/c.
Однако если вращение коллапсирующего тела недостаточно велико, чтобы помешать сжатию его до размеров меньше или порядка гравитационного радиуса
(J/(GM2/c)<
{->A - означает вектор А (стрелка над А)}
->Q = Gc-2R-3[->J — 3->n(->J->n)]. Здесь ->п — единичный вектор направления оси гироскопа. Измеряя угловую скорость прецессии гироскопа в поле вращающейся черной дыры, можно определить ее угловой момент и тем самым угловой момент сколлапсировавшего тела J.
Эргосфера. По мере приближения к вращающейся черной дыре одновременно усиливаются два эффекта: растет поле тяготения и усиливается эффект увлечения. Точное решение уравнений Эйнштейна, описывающее гравитационное поле вращающейся черной дыры, было получено в 1963 г. Роем Керром, Соответствующая этому решению диаграмма пространства-времени изобра жена на рис. 3. Анализ решения Керра показывает, что прежде чем мы достигнем горизонта событий, размер которого определяется выражением r = Rq тождественно= GMc-2(1+ + + sqrt(1-(Jc/GM2)2) ), эффект увлечения возрастает на столько, что оказывается невозможным ему противодействовать2. Это приводит к тому, что внутри поверхности, получившей название предела статичности и определяемой условием
r=Rgтождественно=GM/c2(1+sqrt[1-(Jc/GM2)2cos teta ] )
все тела увлекаются во вращение по направлению вращения черной дыры (teta — угол от оси вращения). Остановить это вращение, не вылетев наружу за предел статичности, невозможно. (Для этого потребовалось бы сообщить телу сверхсветовую скорость.) Область вокруг
----2 При |J|>GМ2/с черная дыра не образуется.
Рис, 3. Диаграмма пространства-времени вращающейся черной дыры
вращающейся черной дыры, лежащая между пределом статичности и горизонтом событий, получила название эргосферы. В отличие от области, лежащей под горизонтом событий, в эргосфере частицы могут двигаться, как приближаясь, так и удаляясь от черной дыры, и, в частности, могут покинуть эргосферу, вылетев наружу. Горизонт событий в общем случае играет роль односторонней мембраны, пропуская частицы и сигналы только в одном направлении — внутрь. -
Угловая скорость вращения черной дыры. Падающий наблюдатель пересекает предел статичности и горизонт событий за конечное время по собственным часам, регистрируя при этом лишь непрерывное возрастание приливных сил. Для внешнего наблюдателя процесс приближения к горизонту -событий как пробной частицы, так и самого коллапсирующего тела затягивается на бесконечно большое (по его часам) время. При этом оказывается, что, подходя к горизонту событий, все те-
Р
ис. 4. “Вид сверху” по оси вращения на вращающуюся черную дыру. Малые окружности соответствуют положениям фронта волны излучения через малый промежуток времени после испускания волны в точках /, 2, 3, 4. Эффект увлечения в эргосфере настолько велик, что никакое физическое тело не может в ней покоиться относительно удаленного наблюдателя
ла приобретают одну и ту же угловую скорость вращения, равную OMEGA=(J/M)[R2g +(J/Мс)2]-1. Эта величина получила название угловой скорости вращения черной дыры. OMEGA постоянна на поверхности черной дыры. В этом смысле вращение черной дыры напоминает вращение твердого тела. Так же как и при коллапсе невращающегося тела, возрастающее красное смещение при приближении поверхности тела к горизонту и падение по экспоненциальному закону мощности излучения, выходящего к отдаленному наблюдателю, приводят к тому, что через характерные времена порядка Rg /c перестает выходить наружу информация и образуется черная дыра. Заряженные черные дыры. Если коллапсирующее тело обладало электрическим зарядом, то возникающая черная дыра “помнит” об этом. Падение электрического заряда Q в черную дыру приводит к тому, что поток электрического поля через ее поверхность оказывается равным 4piQ в полном соответствии с теоремой Гаусса. Силовые линии электрического поля выходят из черной дыры, и вне ее имеется электрическое поле. Если черная дыра не вращается, то это поле описывается законом Кулона. Вращение заряженной черной дыры с массой М и угловым моментом J приводит к дополнительному появлению дипольного магнитного поля, причем магнитный момент оказывается равным: мю= (Q/M)J. Соответствующее точное решение уравнений Эйнштейна, обобщающее решение Керра на случай, когда черная дыра обладает электрическим зарядом, было получено в 1965 г. в работе группы американских теоретиков во главе с профессором Эзрой Ньюмапом. Как выяснилось позднее, это решение, получившее название решения Керра—Ньюмана, однозначно определяемое тремя параметрами: М - массой, J — угловым моментом и Q —электрическим зарядом, является самым общим из возможных решений, описывающих стационарную черную дыру в пустоте. Геометрические свойства керр-ньюмановской черной дыры весьма сходные с описанными выше свойствами керровской черной дыры.
Поверхность черной дыры при наличии вращения перестает иметь сферическую форму. Площадь поверхности керр-ньюмановской черной дыры равна
A = 4pi [R2g + (J/Mc)2] =4piG2с-4(2M2—Q2/G+.
+ 2Мsqrt[M2—Q2/G—J2c2/G2M2]).
При описании свойств черных дыр важную роль играет так называемая поверхностная гравитация kappa
При отсутствии вращения и заряда kappa=c4/GM=GM/R2g Эта величина хaрактеризует “напряженность” гравитационного поля на поверхности черной дыры. Электрический потенциал на поверхности черной дыры равен
ОБЩИЕ СВОЙСТВА ЧЕРНЫХ ДЫР
Несферический гравитационный коллапс. При сжатии сферически-симметричного тела гравитационное поле вне этого тела остается неизменным (статическим). Это утверждение в общей теории относительности известно как теорема Биркгофа. При коллапсе вращающихся тел и тел несферической формы гравитационное поле оказывается нестационарным — происходит излучение гравитационных волн. Черная дыра, возникающая в результате этого коллапса, также нестационарна, т. е. ее форма и размер зависят от времени. Часть гравитационных волн уходит на бесконечность, другая часть поглощается черной дырой, что приводит к увеличению ее энергии. Если черная дыра предоставлена самой себе, то с течением времени процесс излучения гравитационных волн прекращается и черная дыра становится стационарной.
Замечательным оказывается то, что всякая черная дыра, переходя в стационарное состояние, обязательно
превращается в керровскую или в случае, если тело обладало электрическим зарядом, керр-ньюмановскую черную дыру, свойства которой однозначно определяются значениями трех параметров: М — массы, J — углового момента и Q — заряда. После образования стационарной черной дыры все особенности внутреннего строения сколлапсировавшего тела, наличие в нем источников различных полей, кроме электромагнитного, связанного с зарядом Q,становятся недоступными для наблюдения. Подобные черные дыры, обладающие одинаковыми значениями параметров М, J и Q, неотличимы друг от друга. Все остальные характеристики, которыми обладало коллапсирующее тело (такие, как мультипольные гравитационные и электромагнитные моменты, заряды, связанные с другими взаимодействиями (например, сильным и слабым и т. п.), забываются черной дырой.














