64186 (695581), страница 15
Текст из файла (страница 15)
изоляционная трубка образует внешнюю оболочку кабеля.
Полоса пропускания коаксиала занимает промежуточное положение между витой
парой и оптическим кабелем. Кабель со значительной полосой пропускания
является основой для создания широкомасштабных региональных сетей ЭВМ. В
зависимости от типа сети и требуемых услуг используются различные стандарты
на коаксиальный кабель. Возможности большинства типов сетей обеспечиваются
следующими стандартами коаксиальных кабелей:
- RG-8 и RG-11 толстый Ethernet кабель (50 Ом);
- RG-58 тонкий Ehernet кабель (50 Ом);
- RG-59 используется в системах кабельного телевидения (75 Ом);
- RG-62 используется в сетях ARCNET (93 Ом)
[КС 8-6]
[5]Преимущества:
- Существуют устоявшиеся технологии и стандарты, которые способствуют
обеспечению совместимости и взаимной работоспособности оборудования
различных производителей;
- Устойчивость к электромагнитному излучению лучше, чем в случае витой пары;
- Обеспечивает значительно более широкую полосу пропускания по сравнению с
витой парой;
- Обладает хорошими механическими свойствами, может использоваться в
условиях с повышенными требованиями эксплуатации.
[5]Недостатки:
- Коаксиальный кабель подобно витой паре не защищен от возможности
"подслушивания", недостаточно высока устойчивость к электромагнитному
излучению;
- Некоторые типы коаксиалов обладают большим весом, большими размерами, а
также большой стоимостью.
[КС 8-7]
[ Оптический кабель ]
[ Защитная внешняя Стеклянная Оптическое ]
[ оболочка оболочка ядро ]
[ к рис. на стр.8-8 (в поле рисунка) ]
[1]Оптоволоконный кабель (Fiber)
[5]Оптоволоконный кабель изготавливается из светопроводящего стекла
(пластических волокон), расположенного в центре толстой трубки из защитного
материала, которая, в свою очередь, помещается во внешнюю твердую оболочку.
Многочисленные волокна увязываются в центральной части кабеля. При этом
кабель может быть полностью неметаллическим. В отличие от двух ранее
рассмотренных типов кабелей опто-волоконный кабель не допускает "утечки"
информации и устойчив к электромагнитному излучению.
Оптические кабели значительно компактнее и более легкие, чем кабели из
медного провода. Большие информационные магистрали, использующие оптические
кабели могут обеспечить гораздо большее число соединений, чем аналогичного
размера проводные кабели. Ослабление сигнала в оптических волокнах меньше,
чем в медных проводах. Поэтому для осуществления передачи информации на
длинные расстояния требуется меньшее число повторителей (устройств
регенерации сигналов).
Интерфейсные устройства оптических сетей преобразуют электрические сигналы
ЭВМ в световые сигналы, направляемые в оптоволокно, а также выполняют
обратные преобразования. Световые
импульсы генерируются светодиодами (LEDs - Light Emmiting Diodes) или лазерными
диодами (ILDs - Injection Laser Diods). Преобразование световых импульсов в
электрические сигналы выполняются с помощью фотодиодов.
Оптическое волокно обеспечивает чрезвычайно широкую полосу пропускания,
поскольку она определяется высокочастотными свойствами протонов, в отличие от
низкочастотных свойств сугубо электрических систем.
[КС 8-8]
[5]Преимущества:
- устойчивость к электромагнитному излучению, а также отсутствие излучения
во вне делают оптический кабель чрезвычайно надежной и безопасной
коммуникационной средой;
- обеспечивается чрезвычайно широкая полоса пропускания.
Недостатки:
- оборудование сетевых интерфейсов и оптоволоконные кабели относительно
дороги;
- подключение требует высоко точного изготовления элементов и
тщательной ручной доводки;
- технология прокладки и конфигурирования оптического кабеля относительно
сложна.
[1]Сравнение преимуществ и недостатков ограниченных сред.
[5]Для того, чтобы сравнить характеристики и достоинства различных сред,
необходимо рассмотреть их в реальной обстановке функционирования конкретных
приложений. При этом следует учитывать такие параметры, как требования к
сетевым интерфейсам, устойчивость к электромагнитному излучению (EMI),
требования к безопасности, требования к полосе пропускания. Полоса
пропускания является наиболее типичной характеристикой.
---------------------------------------------------------------
| Тип | Стоимость | Стоимость | EMI |
| среды | кабеля | монтажа среды |чувствительность|
| | (50 футов) | | |
|------------|------------|------------------|----------------|
| Витая пара | Наименьшая | Наименьшая | Высокая |
| | |(0, если уже | |
| | | смонтирована) | |
|------------|------------|------------------|----------------|
| Коаксиал | Средняя | Более дорогая | Средняя |
|------------|------------|------------------|----------------|
| Оптоволокно| Высокая | Наибольшая | Иммунитет |
| | |(специальное | |
| | | оборудование, | |
| | | доводка) | |
---------------------------------------------------------------
Рис. 8-1. Ограниченные среды, сравнение.
[КС 8-9]
[ Неограниченная среда ]
[ Передатчик Cигнал ]
[ Приемник ]
[ к рис. на стр.8-10 (в поле рисунка)]
[1]Неограниченная среда передачи
[5]В неограниченной среде передача и прием электромагнитных сигналов
осуществляется без электрических или оптических проводников. Микроволны,
радиоволны, инфракрасное излучение, лазерная связь являются примерами
неограниченных сред передачи информации (иногда называемые "беспроводными"
средами). Преимущества и недостатки сред обсуждаются в конце раздела. Ниже
рассматриваются типы неограниченных сред.
[КС 8-10]
[ Микроволны ]
приемопередающая
антена
прямого видения
[1]Микроволны
[5]Микроволновая передача данных реализуется в двух формах: в виде систем
наземного базирования, в виде спутниковых систем. Обе эти системы
функционально одинаковы, но возможности каждой системы различны.
[1]Наземные микроволновые системы
[5]Микроволновые сигналы наземных систем, представляемые частотами
гигагерцового диапазона, излучаются между прямонаправленными параболлическими
антенами. Микроволновый тракт может использоваться для решения проблемы
обеспечения возможности совместной передачи телевизионного трафика и трафика
данных, и может являться альтернативой применения кабеля.
Микроволновые тракты могут быть также использованы для связи отдельных
зданий в пределах ограниченного пространства, где прокладка кабеля или
затруднена, или слишком дорого обходится.
Микроволновые тракты подвержены внешнему влиянию электротехнических помех,
не защищены от "подслушивания". Высокочастотные микроволны в значительной
степени ослабляются на больших расстояниях в дождливую погоду и в густом
тумане. На коротких расстояниях ослабление незначительно. Для построения
коротких трактов передачи информации между зданиями используются небольшие
дешевые высокочастотные антенны.
[КС 8-11]
[5]Преимущества:
-прокладка трактов значительно дешевле, чем выполнение земляных работ при
прокладке кабелей и т.п.;
-обеспечение широкой полосы пропускания.
[5]Недостатки:
-требуются лицензирование и санкционирование на использование оборудования;
-чувствительны к внешним воздействиям электротехнических помех, легко
подвержены нарушению защиты (например, прослушиванию тракта).
Подобно наземным микроволновым системам спутниковые микроволновые системы
используют низкие гигагерцовые частоты. Сигналы передаются между прямонаправленными
параболическими антеннами, одна из которой располагается на Земле, другая -
на спутнике, выведенном на геоцентрическую орбиту. Передача данных, телефонного
и телевизионного трафиков может быть осуществлена с помощью таких систем через
океаны и континенты. На основе таких средств возможно развертывание
множественных приемопередающих систем, а также сквозных выделенных систем
типа точка-точка.
[1]Спутниковые микроволновые системы
[5]Спутниковые микроволновые тракты также подвержены воздействию внешней
среды, электромагнитным помехам и подвержены нарушению защиты
(перехвату информации). Тракты полностью зависят от космической модемной
технологии, однако с их помощью возможно осуществление коммуникации с
наиболее отдаленными и труднодоступными районами Земли.
[5]Преимущества:
- задержка распространения и стоимость связи не зависят от расстояния между
приемником и передатчиком;
- между передающей и принимающей точками даже, если они находятся на различных
континентах, не требуется какого-либо посредничества дополнительных наземных
служб связи;
- обеспечивается довольно широкая полоса пропускания;
- наземные станции могут быть как стационарными, так и мобильными,
расположенными на самолетах или на морских судах;
- спутниковые системы обеспечивают как узконаправленную, так и
широковещательную передачу данных.
[5]Недостатки:
- требуется лицензирование и санкционирование на использование оборудования;
- подверженность внешним влияниям, электромагнитным помехам, нет защиты от
перехвата информации;
- требуется дорогая модемная космическая технология;
- из-за больших расстояний сигналы претерпевают заметные задержки по
сравнению с задержками при использовании прямых трактов.
[КС 8-12]
[ Лазерная передача ]
[Приемник Передающий лазер ]
[Передающий лазер Приемник ]
[ к рис. на стр. 8-13 (в поле рисунка)]
[1]Лазер
[5]Коммуникационный лазер излучает узкий пучок когерентного света (обычно
инфракрасного), который модулируется импульсами передаваемых данных.
Излучение воспринимается фотодиодами и преобразуется в последовательность
битов. Лазерная передача, также как и микроволновая, выполняется в условиях
прямой видимости приемника и передатчика. Однако, поскольку свет имеет
большую частоту, чем микроволны, полоса пропускания (информационная емкость)
лазерного тракта во много раз шире. Кроме этого, лазерное излучение
обладает большей направленностью, чем микроволновое излучение.
[5] Преимущества:
- не требуется лицензирование на использование среды передачи данных;
- между передающей и принимающей точками не требуется какого-либо
посредничества дополнительных наземных служб связи;
- лазерный тракт устойчив к внешним воздействиям, электромагнитным помехам
и защищен от утечки информации.
[5]Недостатки:
- значительное затухание сигнала при передаче в воздушной среде;
- относительно короткое расстояние передачи;
- требуются дополнительные регулировочные мероприятия.
[КС 8-13]
[ Передача данных в инфракрасном спектре ]
[ Инфракрасный ]
[ трансивер ]
[ к рис. на стр. 8-14 ( в поле рисунка) ]
[1]Инфракрасные волны
[5]Последним достижением в области построения неограниченных сред передачи
данных является применение инфракрасных светодиодов (LED и ILD) и фотодиодов
(наряду с использованием аудиовизуального управления и с созданием
оптоволоконных трансиверов). В соответствии с этим методом передаваемые
сигналы в ифракрасном спектре воспринимаются приемником, находящимся в зоне
прямой видимости передатчика, или же, приемники работают с отраженным от
стен или потолка, инфракрасным излучением.
[5]Преимущества:
- налажено массовое производство относительно недорогих интерфейсных
устройств;
- обеспечивается широкая полоса пропускания сравнимая с полосой пропускания
оптоволоконной системы.
[5]Недостатки:
- состояние атмосферы может воздействовать на передачу сигналов;
- относительно небольшие расстояния, на которые может вестись передача.
[КС 8-14]
[ Радио передача ]
[ Радио ]
[ Трансивер ]
[Сетевой ]
[Интерфейс ]
[ к рис. на стр. 8-15 (в поле рисунка)]
[1]Радиоволны
[5]Электромагнитные волны в диапазоне частот от 3 МГц до 3000 МГц называются
радиоволнами. Широковещательная трансляция сигналов осуществляется с помощью
передающей антенны. В указанном диапазоне частот располагаются
широковещательные полосы коротковолнового радио, высокочастотного (VHF)
телевидения и FM-радио, а также сверх-высокочастотного (UHF) радио и
телевидения.