63817 (695461)

Файл №695461 63817 (Электролитические и оптические методы контроля РЭСИ)63817 (695461)2016-08-01СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Министерство образования Республики Беларусь

Белорусский государственный университет информатики и

радиоэлектроники

кафедра РЭС

РЕФЕРАТ

на тему:

«Электролитические и оптические методы контроля РЭСИ»

МИНСК, 2008

Электрография.

Электролит состоит из бензидина, поверхностно-активного вещества и коллоида. Далее к ячейке прикладывают напряжение 5-10 В при 1 мкА и вы­держивают 5-10 мин. При приложении к ячейке напряжения неокрашенный раствор солянокислого бензидина окисляется с образованием темно-синих продуктов. После проведения процесса электрографии на фильтрованной бу­маге получается зеркальное изображение сквозных дефектов в виде темных пятен, форма и размер которых точно соответствует дефектам в диэлектриче­ской пленке. Процесс изображен на рисунке 1.

Электрофорез.

Электрофорез – движение заряженных частиц, находящихся в виде суспен­зии в жидкости, в электрическом поле между двумя электродами на одном из которых происходит осаждение частиц.

Процесс включает в себя: стадию заряда частиц, транспортирования в электрическом поле и осаждения. Положительно заряженными частицами оказываются частицы гидроокисей металлов, органических красителей, отри­цательно заряженными - частицы металлов, сульфидов и др. Ячейка для элек­трофореза представлена на рис. 2.

В качестве электролита используется ацетон или метиловый спирт. Расстояние между электродами 5 мм, время процесса 3 мин., напряжение до 80В.

При малой толщине окисла <<0,02 мкм наблюдаются дефекты, локализо­ванные непосредственно вблизи поверхности полупроводника (возможно, они возникли после механической полировки поверхности). До 0,04 мкм плот­ность выявленных дефектов возрастает, а затем быстро падает (рис.3).

Рисунок 1 – Принципиальная схема установки для электрохимической автогра­фии

1 – анод; 2 – кремниевая подложка;

3 – диэлектрическая пленка;

4 – мембранная бумага;

5 – катод.

Рисунок 2 – Испытательная ячейка для электрофореза

1 – исследуемая структура; 2 – электрододержатель;

3 – электролит; 4 – второй электрод (катод).

Рисунок 3 – Зависимость плотности дефектов от толщины слоя SiO2

Этот характер кривой можно объяснить дополнительным выявлением сквозных дислокаций через тонкую пленку окисла. При более толстом слое окисла d = 0,04 мкм эффект сквозных дислокаций ослабевает, выявляются только несквозные дефекты. При толщинах более 0,08 мкм выявляются де­фекты, образованные в результате осаждения пленок. Как видно из рис. 4 плотность пор, выявленная методом электролиза (нижняя кривая), много меньше плотности дефектов, выявленных электрофорезным декорированием (верхняя кривая), в связи с тем, что электролиз не способен выявить "скры­тые дефекты" и выявляет только сквозные поры. Электрофорез позволяет об­наруживать следующие виды дефектов: сквозные и несквозные поры окисла, скопления примесей вблизи поверхности.

Декорирование с помощью коронного разряда.

Этот метод является модификацией электрофорезного декорирования. На первом этапе процесса ионы коронного разряда осаждаются на поверхность образца и заряжают диэлектрические участки пленки. Этот заряд создает электрическое поле. Источником положительно заряженных ионов служит проволочная сетка, подсоединенная к высоковольтному источнику постоян­ного тока, обеспечивающему напряжение до ±10 кВ и ток до 6 мА. Сетка рас­полагается в 2 см над пластиной.

Рисунок 4 – Зависимость плотности дефектов от приложенного напряжения для методов

1 – электрофореза; 2 – электролиза.

На втором этапе образец погружается в суспензию, состоящую из заряжен­ных частиц.

При совпадении знаков зарядов осаждаемых частиц и диэлектрической пленки осаждение частиц идет в местах дефектов - происходит прямое деко­рирование, которое менее полезно, чем обратное, так как дефекты оказыва­ются закрытыми осадком.

При противоположных знаках зарядов частиц и диэлектрической пленки, частицы осаждаются всюду, кроме дефектов и окружающих их областей. Та­кой процесс называется обратным декорированием. Недостатком метода явля­ется необходимость работы с высокими напряжениями и необходимость тща­тельной очистки поверхности пластины.

Рисунок 5 – Схема процесса осаждения заряженных частиц на заряженную подложку

а) прямое декорирование; б) обратное декорирование

Сравнительная оценка параметров электрохимических методов обнаруже­ния дефектов в слоях двуокиси кремния представлена в таблице 1.

Таблица 1

Сравнительные характеристики параметров электрохимических ме­тодов контроля

Название метода

Чувствительность, мкм

Разрешающая способность, мкм

Электролиз (пузырьковый)

0,3

40-60

Электрография:

а) Цветные реакции

0,5

2-5

б) На фотобумаге

0,1 - 0,3

200 - 300

Электрофорез

0,1 - 0,3

10-30

Декорирование с помо­щью коронного разряда

1 -5

Оптический контроль

Оптические методы неразрушающего контроля основаны на анализе взаимо­действия оптического излучения с объектом контроля. Методы оп­тического контроля и области их применения приведены в ГОСТ 23479-79 и ГОСТ 24521-80.

Спектр оптических излучений подразделяется по длине волны на три уча­стка: инфракрасное излучение (от 1 мм до 780 нм), видимое излучение (от 780 нм до 380 нм) и ультрафиолетовое излучение (от 380 нм до 10 нм).

Разрешающая способность оптических методов:

где А – коэффициент преломления среды (материала между наблюдаемым

объектом и линзами);

л – длина волны.

2б – максимальный угол при вершине конуса лучей, попадающих в точку

изображения на оптической оси;

D – числовая апертура линз объектива;

F – фокусное расстояние;

D – диаметр апертуры (диафрагмы) (см. рис. 6).

Для самых лучших современных объективов величина А, в случае воздуха, может достигать 0.95, а при заполнении пространства между объектом и объ­ективом маслом эта величина может быть увеличена до 1,5. Разрешение самых лучших оптических микроскопов достигает 0,3 мкм. Оптическими методами можно контролировать качество кристаллов и оснований ИС, монтажа, свар­ных и паяных соединений, плёнок и т. д. Основные методы оптического кон­троля приведены в таблице 2.

Рассмотрим наиболее часто применяющиеся методы оптического контроля в технологии РЭСИ.

Визуально-оптический контроль.

Одними из наиболее распространённых приборов визуального контроля являются микроскопы - бинокулярный, стереоскопический и проекционный. Точность контроля объекта при работе с проекционным экраном несколько меньше, чем при наблюдении в окуляр.

Бинокулярные и проекционные микроскопы можно разделить на «эписко-пические», (для контроля в отражённых лучах) и диаскопические (для кон­троля в проходящих лучах).

Оптическая схема эпископического проектора представлена на рис. 7. Контроль осуществляется в светлом поле зрения. Основным недостатком яв­ляется малая яркость и недостаточная контрастность изображений.

Диаскопические проекторы представляют собой либо просмотровую лупу создающую мнимое, прямое, увеличенное изображение, либо проекционное устройство, создающее действительное, обратное, увеличенное изображение. Различают линзовые и зеркальные диаскопы. Оптическая схема линзового диаскопа представлена на рис. 8. Рассматривание кадра осуществляется при освещении либо от специального источника света с искусственной подсвет­кой, либо на каком-нибудь ярком фоне с естественной подсветкой. Оптиче­ская схема зеркального диаскопа представлена на рис. 9.

Интерферометрический контроль.

Среди интерферометрических выделяют три характерных метода.

Цветовой метод. Основан на свойстве тонких прозрачных плёнок, нане­сённых на отражающую подложку, менять свой цвет в зависимости от толщи­ны (явление интерференционных световых лучей, отражённых от границы раздела «плёнка — воздух» и «плёнка — подложка»). Цвета плёнок двуокиси кремния в зависимости от толщины приведены в таблице 3.

Рисунок 6 – Оптическая схема

Рисунок 7 – Оптическая схема эпископического проектора

Таблица 2

Оптические методы неразрушающего контроля и области их применения.

Название метода

Область при­менения

Контролируе­мые параметры

Чувст­витель­ность

Отно-ситель ная по­греш­ность, %

Факторы, ограничиваю­щие область применения

1. Визуальный

Дефектоскопия, контроль размеров

Дефектность, отклонение от заданной формы изделия

0,1 мм

-

Диапазон длин волн должен быть 0,38 - 0,76 мкм

2. Визуально –

оптический

Дефектоскопия с помощью микроскопов и проекционных устройств

Размеры изделий, дефектов, отклонений от заданной формы

0,6 А

0,1-1,0

Минимальная яркость объекта контроля не менее 1 кд/м2

3. Фотометрический

Контроль параметров осаждения тонких пленок

Интенсивность излучений, отражаемых или пропускаемых контролируемыми структурами

0,6 А

5

-

4. Реф-лексомет-рический

Контроль шероховатости поверхности изделий

Коэффициент отражения

0,6 А

1,0

-

5. Денси-тометри-ческий

Контроль оптической плотности прозрачных пленок

Коэффициент пропускания, оптическая плотность

А

1,0

Применим для нерассеи-вающих прозрачных сред

6. Нефе-лометри-ческий

Анализ структуры кристаллов

Коэффициент рассеивания, концентрация включений

0,6 А

1,0

-

7. Реф­ракцион­ный

Контроль оп­тических сред

Показатель преломления

0,6 А

0,01

Применим для оптиче­ски прозрач­ных сред

8. Интер-феромет-рический

Контроль тол­щины, шеро­ховатости и размеров из­делий

Толщина, раз­меры изделий

0,1

0,1

Поверхность изделий должна быть отполирован­ной

9. Ди­фракци­онный

Контроль размеров тон­ких волокон, формы острых кромок, от­верстий

Диаметры во­локон, разме­ры дефектов, острых кромок

0,1

1,0

Размеры де­фектов долж­ны быть сравнимы с длиной волны света

10. Спек­тральный

Контроль спектральных характеристик изделий в проходящем и отраженном свете

Спектральные коэффициен­ты отражения, поглощения, пропускания, концентрация вещества

10-4

1,0

-

11. Поля­ризаци­онный

Контроль на­пряжений в прозрачных средах, анализ степени поля­ризации ис­точников све­та, эллипсо-метрическая толщиномет-рия (одновре­менно кон­троль толщи­ны и показа­теля прелом­ления)

Вращение плоскости по­ляризации, толщина и показатель преломления

1,0

Применим только для оптически прозрачных сред

12. Стро­боскопический

Дефектоско­пия и размер­ный контроль подвижных объектов

Угловая ско­рость, дефект­ность

10-6 с

5,0

-

13. Голо-графиче­ский

Контроль геометрии объектов сложной формы (фотошаблонов).

Деформации, перемещения, отклонения от заданной формы, гради­енты показа­теля прелом­ления

0,1

1,0

-

14. Теле­визион­ный

Оптический анализ струк­туры веществ, измерение линейных размеров

Размеры де­фектов

1,0

-

Таблица 3

Цвета плёнок двуокиси кремния в зависимости от толщины

Цвет пленки

Толщина пленки двуокиси кремния, мкм

Бежевый

0,05

Темно-фиолетовый

Светло-красновато-фиолетовый

0,85

Относительная погрешность измерения толщины пленок составляет 10%.

Первый эллипсометрический параметр (отношение амплитуд компонент, параметр условно обозначили через тангенс) определяется из соотношения:

Второй эллипсометрический параметр определяется из соотношения:

Рисунок 8 – Оптическая схема линзового диаскопа (изображение

мнимое, пря­мое, увеличенное)

Рисунок 9 – Оптическая схема зеркального диаскопа с искусственно-

подсвет­кой (изображение действительное, обратное, увеличенное)

Таким образом, параметр А есть относительная разность фаз между Р и S компонентами, возникшая вследствие отражения от рассматриваемой структу­ры. Основное уравнение эллипсометрии имеет вид:

Величина р для случая тонкой прозрачной диэлектрической пленки на по­верхности полупроводника является функцией, показателей преломления ок­ружающей среды, пленки и подложки , толщины пленки d, длины вол­ны лизерия л и угла падения луча на образец – (см. рис. 10).

Конкретная зависимость имеет вид

Рисунок 10 – Ход лучей при отражении линейно поляризованного

света от по­верхности полупроводника с пленкой

r1p, r2p, r1s, r2s – соответ­ственно коэффициенты отражения раздела «воздух-пленка» и «пленка-подложка»;

– изменение фазы, вызванное прохождени­ем луча света через пленку толщиной d.

Метод контроля с помощью интерференциональных микроскопов. Для контроля толщины покрытия необходимо получить на подложке, с на­пыленной на ней пленкой, уступ. Толщина слоя находится как:

где а – величина изгиба полосы

b – расстояние между соседними темными и светлыми полосами.

л длина волны источника света

Широко распространенный микроскоп МИИ-4 позволяет контролировать толщину пленок от 0,03 до 2,2 мкм с относительной погрешностью 5%.

Метод контроля с помощью лазерной интерферометрии (контроль диэлектри­ческих пленок в процессе их получения).

Вследствие интерференции отраженных от границ («пленка – подложка» и «пленка – среда») лучей, интенсивность сигнала фотоэлемента меняется периодически с изменением толщины наращиваемой пленки. Общая тол­щина диэлектрической пленки нанесенной на стеклянную или ситалловую подложку:

где Z – суммарное число экстремумов (т.е. максимумов и минимумов); л – длина волны монохроматического света; n – показатель преломления пленки; ц – угол преломления луча в пленки.

Лазерная интерферометрия позволяет контролировать не только суммар­ную толщину, но и промежуточную. Для измерения толщины эпитаксиальных слоев от 2 до 50 мкм используется спектральный диапазон инфракрасного (ИК) излучения. В диапазоне ИК волн исследуемые пленки прозрачны.

Поляризационный (эллипсометрический) контроль.

Этот метод основан на изменении поляризации света, отраженного от подложки с тонкой прозрачной пленкой на поверхности. [29;30] При осве­щении подложки линейно-поляризованным светом, составляющие излуче­ния (параллельная и перпендикулярная плоскости падения) отражаются по разному, в результате чего, после отражения излучение оказывается эллип­тически поляризованным (рис.11). Отсчет положительных значений угла ведется против часовой стрелки. Измерив эллиптичность отраженной вол­ны, можно определить свойства пленки, вызвавшей изменения поляризации. Состояние эллиптической поляризации определяется двумя эллипсометрическими параметрами и А.

Зная оптические параметры, толщину пленки d (изменяется от 0,5 до 10 мкм), длину волны л (составляет 0,5-0,6 мкм), угол падения (изменяется от 45° до 75°) и экспериментально определив значение и А и определя­ют показатель преломления . Результатами расчета являются номограммы (рис. 12), на которых представлены зависимости A, . Величины ш и А являются периодическими функциями толщины и повторяются через так называемый эллипсометрический период равный 250...300 нм, в зави­симости от показания преломления п, и угла падения . После прибли­женного определения , а также и в том случае, когда величина n, извест­на заранее, используют кривые и (рис 13), построен­ные для определенного значения углов падений и показателей преломле­ния для более точного определения толщины пленки d. Используя лазер­ную эллипсометрию, определяют толщины пленок от до 17 мкм и показатели преломления от 1,1 до 3,0.

Разновидностью эллипсометрии является инфракрасная эллипсометрия. Она используется для определения толщины пленок и концентрации носителей за­ряда в сильнолегированных подложках (структуры nn+, pp+, Si, Ge, GaAs). Кон­троль толщины осуществляется в диапазоне от 1 до 10 мкм в структурах крем­ния, GaAs на 154мкм. В сильнолегированных положках из-за большого погло­щения света на свободных носителях (исследуемая пленка становиться непроз­рачной для видимого диапазона длин волн) показатель преломления начинает зависеть от концентрации носителей.

Толщина пленки и концентрация носителей заряда рассчитывается по зави­симости:

где d – толщина пленки;

n – концентрация носителей заряда.

Оптические методы контроля обладают высокой разрешающей способнос­тью и хорошей чувствительностью и позволяют перейти от традиционного ис­пользования зрительного рецептора оператора к автоматическим методам обра­ботки изображения и использованию полученной информации в процессах ис­пытания РЭСИ.

Рисунок 11 – Номограммы ш и А для приближенного определения

показателей пре­ломления n и толщины d эпитаксиальных пленок

Рисунок 12 – Номограммы для определения толщины пленок

Рисунок 13 – Спектральная зависимость показателя преломления с различной кон­центрацией свободных носителей от длины волны падающего излу­чения 1 – N=1018 см3; 2 – N=1019 см3

ЛИТЕРАТУРА

  1. Глудкин О.П. Методы и устройства испытания РЭС и ЭВС. – М.: Высш. школа., 2001 – 335 с

  2. Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование/ под ред. А.И.Коробова М.: Радио и связь, 2002 – 272 с.

  3. Млицкий В.Д., Беглария В.Х., Дубицкий Л.Г. Испытание аппаратуры и средства измерений на воздействие внешних факторов. М.: Машиностроение, 2003 – 567 с

  4. Национальная система сертификации Республики Беларусь. Мн.: Госстандарт, 2007

  5. Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств – Техносфера, 2005. – 504с.

Характеристики

Тип файла
Документ
Размер
3,72 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6451
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее