63513 (695350)
Текст из файла
ОСНОВНІ ФІЗИЧНІ ПРОЦЕСИ В ОПТИЧНИХ ЛІНІЯХ ЗВ’ЯЗКУ
1. Розповсюдження електромагнітних хвиль в оптичних волокнах
Модель розповсюдження світла крізь обмежену структуру подібну до оптичного волокна в термінах геометричних променів представляє тільки приблизний опис ефектів розповсюдження в них. Цей підхід добре діє поки характерний розмір поперечного перетину волокна як діаметр серцевини (2а, де а-радіус серцевини) великий у порівнянні з довжиною хвилі (), що розповсюджується в волокні, і відносна різниця індексів серцевини і оболонки не надто мала. Фактично, як а, так і можуть бути з'єднані разом з , щоб створити комплексний параметр, що називається нормалiзованою частотою (V-числом) волокна, що визначається, як
. (1)
Якщо число V-волокна більше 10, результати геометричної оптики, основаної на променевих траєкторіях, приводять до точних рішень для багатьох ефектів розповсюдження в оптичних волокнах. Для V10, геометрична оптика не в змозі пояснити ефекти розповсюдження в волокнах, що й вимагає здійснити електромагнiтний аналіз, оснований на хвильовій оптиці, щоб дослідити ефекти розповсюдження. Для одержання загальної основи, що могла б бути застосована для будь-якого волоконного хвильоводу з довільним числом V, починають з рівняння Максвела і відтворюють так звані векторні хвильові рівняння [5, 6], що задовольняють електричному (
) та магнiтному (
) полю векторів світлової хвилі:
, (2)
, (3)
де =0n2, 0 є значенням для вільного простору, n - показник заломлення, ε -
діелектрична проникність волокна і 0 - магнитна проникність для вільного простору, що по значенню така як і в волокні, при припущенні, що волокно не є немагнетиком. Перша форма розподілу індексу заломлення, запропонована для оптичного волокна, являє собою профiль, в якому поза серцевиною з показником заломлення n1 (діаметр 2а) знаходиться однорідна оболонка з показником заломлення n2; так, що можна алгебраїчно представити профіль показника заломлення (ППЗ) як:
. (4)
Волокна з профілем, аналогічним (4) відомі як волокна зі східчастим ППЗ. Для такого однорідного середовища член V дорівнюватиметься 0 як в серцевині, так і в оболонці, і в кожній з цих областей кожна декартовська компонента електричного та магнiтного поля буде задовольняти рівнянню
. (5)
Воно відоме як скалярне хвильове рівняння, де представляє будь-яку з декартовських компонент полів
та
. Оскільки n є незалежним від z, рішення рівняння може, взагалі, бути записано так:
r,,z,tr,exp i t-z, (6)
де напрямок розповсюдження - уздовж z, і - поширена стала розповсюдження. Рівняння (6) допускає два вигляду рішень в (5) - перше, в якому поле експоненціальне зменшується з r, при якому r>а і осцилює всередині серцевини (rг=1/(d/d) без яких-небудь змін в періоді цього розподілення. Будучи залежним від своєї геометрії і фізичних властивостей, волокно може підтримувати цілий ряд мод або тільки одну моду - в першому випадку його можна назвати багатомодовим волокном, в другому - одномодовим або мономодовим волокном. Фактично, довільно падаюче поле на вхідному кінці волокна може бути завжди записано як
. (7)
В (7)
– представляє суму дискретних направлених мод, тоді як інтеграл - безрозмірна сукупність радіаційних мод. Реальні значення P будуть визначатися граничними умовами.
Ми можемо згадати, що в якісних волокнах телекомунікації відносна різниця показника заломлення оболонка-серцевина звичайно ніколи не перевищує 1-2%. Такі волокна що мають <<1 відомі як напрямні волокна. Побічним продуктом цієї умови (яка має практичний зміст) - те, що моди в таких волокнах є (що можна продемонструвати) майже лінійно поляризованими і мають поперечну компоненту поля , що лежить майже повністю вздовж y або x, з порівняно дуже малою поздовжньою компонентою. Далі, так як різниця індексу заломлення є малою, можна припустити, що і /r є безперервними поперечно r=a.
Так як для східчастого волокна, і залежить від r і лише від нього, тобто є цилiндрично симетричним, (5) записують в цилiндричнiй системі координат
, (8)
де
– хвильове число вільного простору.
Застосовуючи засіб розділення перемінних, тобто записуючи
, (9)
Рівняння (9) може бути вирішене окремо для своєї радіальної та азимутальної компонент. Азимутальна компонента може бути представлена
~exp i l , (10)
де l=0, 1, 2, 3... Радіальна частина задовольнить таким рівнянням
1>1>1>1>1>1>2>Характеристики
Тип файла документ
Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.
Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.
Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.
, r
, ra. (12)
, (13)
і
такі, що
(див. (2.1)). (14)
. (15)
, (16)
. (17)
, (18)
в рівнянні (17)), таким чином підтверджуючи наші більш ранні припущення про те, що в слабко направлених волокнах моди практично лінійно поляризовані з електричним полем вздовж осей X та Y. Рівняння (17) - апроксимована форма точного рівняння (18) для певних постійних поширення різноманітних мод за умови <<1, як було показано, є в межах 1% для <0.01 і в межах 10% для 0.01<<0.25.
, (19)
, (22)
, (23)
. (25)
.













