63467 (695332)

Файл №695332 63467 (Окремі випадки задач оптимального стохастичного керування)63467 (695332)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ОКРЕМІ ВИПАДКИ ЗАДАЧ ОПТИМАЛЬНОГО СТОХАСТИЧНОГО КЕРУВАННЯ

    1. 1. Зовнішній інтеграл

Функції і можуть бути довільними, а математичні сподівання можна обчислювати, якщо як функція від є вимірною.

Якщо ж оптимальна стратегія, отримана в результаті оптимізації, виявиться невимірною, то і функція може виявитися невимірною. У цьому випадку математичне сподівання невизначено.

Для розв’язання цієї проблеми застосовують два підходи. Перший полягає в накладенні на функції і таких обмежень, які забезпечували б вимірність підінтегральної функції на кожному кроці оптимізації : функції і , , повинні бути неперервними по своїх аргументах і повинна існувати щільність імовірності розподілу випадкової величини , а множини значень припустимих стратегій повинні бути компактними.

На жаль, на практиці ці вимоги не завжди виконуються. Тому другий підхід пов’язаний з використанням зовнішнього інтеграла.

Позначимо через простір елементарних подій, що є довільною множиною, а – деяка система підмножин множини .

Математичним сподіванням випадкової величини , заданої на імовірнісному просторі , називається число , якщо інтеграл з правої частини існує.

Нехай і – борелівські простори, , є -алгеброю в . Функція називається -вимірною, якщо для будь-якої множини . Тут – борелівська -алгебра простору .

Для функції , ( ) зовнішній інтеграл за мірою визначається як нижня грань інтегралів від всіх вимірних функцій ( ), що мажорують , тобто

, .

Тут – функція розподілу випадкової величини , що відповідає ймовірнісній мірі .

Для довільної функції має місце співвідношення:

,

де , , і вважають, що .

Оскільки зовнішній інтеграл визначений для будь-якої функції, як для вимірної, так і для невимірної, то ніяких додаткових обмежень на функції і накладати не треба.

Для вимірних функцій обидва види математичних сподівань співпадають. Отже, у постановках задач можна замінити звичайне математичне сподівання на зовнішнє, і навіть якщо знайдена при цьому функція виявиться вимірною, то отримана стратегія керування не перестане бути оптимальною.

Зовнішня міра множини визначається співвідношенням .

Для будь-якої множини

,

де – це індикатор множини , що визначається як

а) якщо , то ;

б) якщо і , то ;

в) якщо або , то ;

г) якщо задовольняє рівності , то для будь-якої функції має місце рівність ;

д) якщо , то для будь-якої функції ;

е) якщо і , то . Якщо при цьому хоча б одна з функцій або -вимірна, то останнє співвідношення вірно зі знаком рівності.

Позначимо через дійсну пряму, а через – розширену дійсну пряму і надалі у всіх висновках замість дійсної прямої використовуватимемо поняття розширеної дійсної прямої.

Вважатимемо, що для розширеної дійсної прямої мають місце всі співвідношення порядку додавання і множення, які було введено для , і припустимо, що і .

Позначимо через множину всіх дійсних у розширеному розумінні функцій , де – простір станів.

– банахів простір всіх обмежених дійсних функцій з нормою, що визначається за формулою

, .

Позначатимемо , якщо , , і , якщо , , .

Для будь-якої функції і будь-якого числа позначимо через функцію, що приймає значення в кожній точці , так, що

, .

Припущення монотонності. Для будь-яких станів , керування і функцій мають місце нерівності

якщо і ;

, якщо і ;

, якщо , і .

Для будь-якого стратегія називається -оптимальною при горизонті , якщо

і -оптимальною, якщо

Багато задач послідовної оптимізації, що становлять практичний інтерес, можуть розглядатися як окремі випадки задач загального виду. Розглянемо деякі з них:

  • задачі детермінованого оптимального керування;

  • задачі стохастичного керування зі зліченним простором збурень;

  • задачі стохастичного керування із зовнішнім інтегралом;

  • задачі стохастичного керування з мультиплікативним функціоналом витрат;

  • задачі мінімаксного стохастичного керування.

    1. 2. Детерміноване оптимальне керування

Розглянемо відображення , що задане формулою

, , , (1)

за таких припущень:

функції і відображають множину відповідно в множини і , тобто , ; скаляр додатний.

За цих умов відображення задовольняє припущенню монотонності. Якщо функція дорівнює нулю, тобто , , то відповідна -крокова задача оптимізації (1) набуває вигляду:

, (2)

. (3)

Ця задача є задачею детермінованого оптимального керування зі скінченним горизонтом. Задача з нескінченним горизонтом має наступний вигляд:

, (4)

. (5)

Границя в (4) існує, якщо має місце хоча б одна з наступних умов:

  • , , ;

  • , , ;

  • , , , і деякого .

У задачі (4) – (5) може бути уведене додаткове обмеження на стан системи , . У такому разі, якщо , позначатимемо .

    1. 3. Оптимальне стохастичне керування: зліченний простір збурень

Розглянемо відображення , що задане формулою

, (6)

за таких припущень:

параметр приймає значення зі зліченної множини з заданим розподілом ймовірностей , що залежать від і ; функції і відображають множину відповідно в множини і , тобто , ; скаляр додатний.

Якщо , , – елементи множини , – довільний розподіл ймовірностей на , а – деяка функція, то математичне сподівання визначається за формулою

,

де ,

,

.

Оскільки , то математичне сподівання визначене для будь-якої функції і будь-якого розподілу ймовірностей на множині .

Зокрема, якщо , ,… – розподіл ймовірностей на множині , то формулу (6) можна переписати так:

При використанні цього співвідношення треба пам’ятати, що для двох функцій , рівність має місце, якщо виконується хоча б одна з трьох умов:

та ;

та ;

та .

Відображення задовольняє припущенню монотонності. Якщо функція – тотожний нуль, тобто , , то за умови , , функцію витрат за кроків можна подати у вигляді:

(7)

де , .

Ця умова означає, що математичне сподівання обчислюється послідовно по всіх випадкових величинах .

При цьому зміна порядку операцій додавання і узяття математичного сподівання припустима, тому що , , і для довільних простору з мірою , вимірної функції і числа має місце рівність .

Якщо виконується одна з двох нерівностей

або

,

то функцію витрат за кроків можна записати у вигляді:

,

де математичне сподівання обчислюється на добутку мір на , а стани , , виражаються через за допомогою рівняння .

Якщо функція допускає подання у такому вигляді для будь-якого початкового стану та будь-якої стратегії , то -крокова задача може бути сформульована так:

, (8)

. (9)

Відповідна задача з нескінченним горизонтом формулюється так:

, (10)

. (11)

Границя в (10) існує при виконанні будь-якої з трьох наступних умов:

  • , , , ;

  • , , , ;

  • , , , , і деякого .

Математичне сподівання визначається і як звичайний інтеграл, і як зовнішній інтеграл з -алгеброю в множині , що складається із всіх підмножин , в залежності від вимірності або невимірності функцій.

Для багатьох практичних задач виконується припущення про зліченність множини .

Якщо ж множина незліченна, то справа ускладнюється необхідністю обчислення математичного сподівання

для будь-якої функції . Подолання цих труднощів і пов’язане з використанням зовнішнього інтеграла.

Характеристики

Тип файла
Документ
Размер
2,76 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее