63281 (695269)

Файл №695269 63281 (Типовые одиночные сигналы)63281 (695269)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

на тему:

«Типовые одиночные сигналы»

МИНСК, 2008

Рассмотрим наиболее широко распространенные типы одиночных радиосигналов: простой прямоугольный радиоимпульс, линейно-частотно-модулированный (ЛЧМ) радиоимпульс, кодо-фазо-манипулированный (КФМ) радиоимпульс.

Простой прямоугольный радиоимпульс длительностью Т0 показан на рис. 1.

Его аналитическое представление

,

где

Рис. 1. Простой прямоугольный радиоимпульс.

Рис. 2. Закон модуляции простого прямоугольного радиоимпульса.

Рис. 3. Спектр простого прямоугольного радиоимпульса.

Рис. 4. Энергетический спектр простого прямоугольного радиоимпульса.

Закон модуляции Uo(t) показан на рис. 2.

Обратим внимание, что фазовая или частотная модуляция внутри радиоимпульса отсутствует

.

Спектр простого прямоугольного радиоимпульса имеет форму функции (sin x)/x (рис.3):

Энергетический спектр имеет форму функции (рис. 4):

Корреляционная функция простого прямоугольного радиоимпульса имеет треугольную форму (рис.5):



Время корреляции (рис. 5), и ширина спектра (рис. 4) определяются , ,

Функция неопределенности простого прямоугольного радиоимпульса

Рис. 5. Корреляционная функция простого прямоугольного радиоимпульса.

Рис. 6. Диаграмма неопределённости простого прямоугольного радиоимпульса.

Рис. 7. Прямоугольный ЛЧМ сигнал.

Соответствующая диаграмма неопределённости простого прямоугольного радиоимпульса показана на рис. 6.

Проявлением принципа неопределённости в случае простого прямоугольного радиоимпульса является невозможность уменьшить ширину основного лепестка функции неопределённости одновременно и вдоль оси времени τ, и вдоль оси частот F. Как следует из рис. 6, сужение функции неопределённости по τ за счёт уменьшения длительности радиоимпульса неизбежно приводит к расширению её вдоль оси F.

Линейно-частотно-модулированный (ЛЧМ) радиоимпульс с прямоугольной огибающей длительностью Т0 показан на рис. 7.

Частота внутри такого радиоимпульса изменяется по линейному закону на величину частотной девиации ∆fm, за время длительности сигнала Т0 (рис. 8):

,

Линейному закону частотной модуляции соответствует квадратичный закон фазовой модуляции (рис.9):

Спектр прямоугольного ЛЧМ радиоимпульса

можно найти, преобразовав показатель экспоненты

Рис. 8. Закон частотной модуляции ЛЧМ радиоимпульса.

Рис. 9. Закон фазовой модуляции ЛЧМ радиоимпульса.

Рис. 10. Амплитудно-частотный и энергетический спектры прямоугольного ЛЧМ радиоимпульса при .

и осуществив переход к новой переменной интегрирования

Тогда

Где - косинус-интеграл Френеля,

- синус-интеграл Френеля,

Анализ соответствующего G0(ω) амплитудно-частотного спектра

показывает, что по мере увеличения произведения ∆fмТ0 рассматриваемый спектр в полосе частот от -π∆fм до π∆fм становится более равномерным, а его спад на границах полосы более крутым. Это позволяет приближённо считать амплитудно-частотный, а вместе с ним и энергетический спектры закона модуляции анализируемого сигнала при больших произведениях ∆fмТ0 прямоугольными (рис. 10) и с учётом того, что С(х) ≈ S(х) ≈ 0,5 при x >> 1, равными :

Таким образом, ширина спектра ЛЧМ радиоимпульса при ∆fмТ0 >> 1 равна девиации частоты

Для фазочастотного спектра ЛЧМ радиоимпульса

при ∆fмТ0 >> 1 может быть принята параболическая аппроксимация (рис. 11)

поскольку его второе слагаемое даже при сравнительно небольших произведениях ∆fмТ0 в полосе частот от -π∆fм до π∆fм практически постоянно и равно π/4:

Корреляционная функция закона модуляции прямоугольного ЛЧМ радиоимпульса, найденная как обратное преобразование Фурье от энергетического спектра S0(ω), имеет вид (рис. 12):

Однако следует иметь в виду, что описываемая этим выражением форма корреляционной функции типа (sin x)/x является приближённой, справедливой при больших произведениях ∆fмТ0, точное выражение может быть получено непосредственно из интегрального представления корреляционной функции:

Рис. 11. Фазочастотный спектр прямоугольного ЛЧМ радиоимпульса при

Рис. 12. Корреляционная функция закона модуляции прямоугольного ЛЧМ радиоимпульса.

Её вид показан на рис. 12 пунктирной линией. Время корреляции ЛЧМ радиоимпульса значительно меньше его длительности

,


Функция неопределённости рассматриваемого сигнала определяется выражением

Диаграмма неопределённости изображена на рис. 13. Из рис.11 видно, что в случав ЛЧМ радиоимпульса существует возможность одновременного сужения основного лепестка функции неопределённости и вдоль оси времени, и вдоль оси частот за счёт увеличения соответственно девиации частоты и длительности радиоимпульса.

Кодофазоманипулированный (КФМ) радиоимпульс представляет собой последовательность примыкающих друг к другу простых прямоугольных радиоимпульсов (парциальных радиоимпульсов, дискретов), амплитуда, длительность и частота несущих колебаний которых одинаковы, а начальные фазы либо одинаковы, либо отличаются на постоянную величину, чаще всего равную π радиан (рис. 14).

Такой радиоимпульс описывается выражением

где - закон модуляции КФМ радиоимпульса,

- закон модуляции дискрета,

- символ кода,

ψk - определяемая кодом начальная фаза k-го дискрета.

Рис. 13. Диаграмма неопределённости прямоугольного ЛЧМ радиоимпульса.

Рис. 14. КФМ радиоимпульс.

Очевидно, при ψk = 0, π символы кода dk = +1, -1. Примером кодов, используемых при внутриимпульсной кодофазовой модуляции импульсных сигналов, может служить код Баркера. Этот код существует только для Nд = 2, 3, 4, 5, 7, 11, 13. Последовательности символов dk, соответствующих коду Баркера, при указанных Nд.

Кодирование начальных фаз дискретов непрерывных КФМ сигналов часто осуществляется в соответствии с так называемым кодом нулевой последовательности максимальной длительности (кодом М-последовательности). Этот периодический код, содержащий в периоде повторения Nд = 2n - 1 символов, где n - произвольное число натурального ряда. Семиэлементные коды нулевой последовательности и Баркера совпадают. На рис. 14 показан закон модуляции семиэлементного кода Баркера.

К орреляционная функция закона модуляции рассматриваемого сигнала равна


В случае Nд = 7 вид Корреляционной функций закона модуляции С0(τ) приведен на рис.15. Из рисунка видно, что основной лепесток корреляционной функции КФМ радиоимпульса определяется корреляционной функцией парциального радиоимпульса.

Поэтому и энергетический спектр КФМ радиоимпульса в основном определяется энергетическим спектром парциального радиоимпульса:

где Sд - энергетический спектр закона модуляции парциального радиоимпульса,

SNд - энергетический спектр кода в первом приближении равный единице.

Рис. 14. Закон модуляции семиэлементного кода Баркера.

Рис. 15. Корреляционная функция закона модуляции КФМ радиоимпульса при

Рис. 16. Диаграмма неопределённости КФМ радиоимпульса.

Таблица 1 Коды Баркера

d1

d2

d3

d4

d5

d6

d7

d8

d9

d10

d11

d12

d13

2

+1

-1

3

+1

+1

-1

4

+1

+1

-1

+1

5

+1

+1

+1

-1

+1

7

+1

+1

+1

-1

-1

+1

-1

11

+1

+1

+1

-1

-1

-1

+1

-1

-1

+1

-1

13

+1

+1

+1

+1

+1

-1

-1

+1

+1

-1

+1

-1

+1

Время корреляции КФМ радиоимпульса

Характеристики

Тип файла
Документ
Размер
41,82 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7026
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее