62719 (695148)

Файл №695148 62719 (Пороги и методы фильтрации речевого сигнала в вейвлет области)62719 (695148)2016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ”

кафедра Сетей и устройств телекоммуникаций

РЕФЕРАТ

На тему:

«Пороги и методы фильтрации речевого сигнала в вейвлет области»

МИНСК, 2008

Жесткий порог фильтрации речевого сигнала.

Жесткий порог фильтрации устанавливается для каждого уровня вейвлет разложения.

Данный порог реализуется следующим образом:

- на i-м уровне разложения вычисляется уровень порога по формуле

, (1)

где – значение вейвлет-отсчета с максимальной амплитудой; –количество ненулевых вейвлет-отсчетов.

В процентном соотношении данное выражение имеет вид

, (2)

где – величина порога в процентах;

- поэлементное сравнение всех ненулевых элементов N-го уровня с заданным порогом и обнуления всех отчетов, равных или меньше данного уровня.

Достоинства данного метода пороговой обработки:

- самая маленькая вычислительная сложность из рассмотренных методов.

Недостатки данного метода пороговой обработки:

- возможность полной потери полезного сигнала при высоком уровне

шума;

- возможность потери полезного сигнала также и при малом уровне шума.

Блок схема алгоритма фильтрации с жестким порогом представлена на рис. 1.

Рис. 1. Блок схема алгоритма фильтрации с жестким порогом

На рис. 2 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

Рис. 2 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

Гибкий порог фильтрации речевого сигнала.

При данном виде фильтрации для задания порога используется количественная оценка вейвлет-коэффициентов на каждом уровне разложения.

Данный метод заключается в следующем:

- на i-м уровне разложения вычисляется количество ненулевых вейвлет-коэффициентов ;

- вычисляется количество обнуляемых вейвлет-коэффициентов на i-м уровне по следующей формуле

, (3)

где – количество уровней вейвлет-разложения; – номер уровня разложения;

- устанавливается порядок обнуления вейвлет-коэффициентов: удаление элементов с минимальной или максимальной амплитудой.

Достоинства данного метода пороговой обработки:

- возможность достижения компромисса между качеством речевого сигнала и вычислительной сложностью;

- гибкость фильтрации зашумленного речевого сигнала.

Недостатки данного метода пороговой обработки:

- невозможность точно определить границы сигнала и шума.

Блок схема алгоритма фильтрации с гибким порогом представлена на рис. 3.

Рис. 3. Блок схема алгоритма фильтрации с гибким порогом

На рисунке 4 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

Рис. 4 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

Статистический метод фильтрации речевого сигнала.

Предложен эффективный метод фильтрации речевого сигнала, использующий статистику распределения амплитуды вейвлет-коэффициентов на каждом i-м уровне разложения.

Суть реализация метода заключается в следующем:

- определение на i-м уровне вейвлет-коэффициента с одинаковой амплитудой (с или без учета знака) и максимальной частотой повторения;

- обнуление данных коэффициентов на каждом i-м уровне разложения;

- повторение предыдущих шагов с учетом достижения требуемого коэффициента сжатия при сохранении приемлемого качества восстановленного речевого сигнала.

Достоинства данного метода пороговой обработки:

- улучшение коэффициента сжатия и качества восстановленного речевого сигнала;

- наименьшая потеря полезного сигнала;

- возможность эффективного устранения избыточности в частотной области;

- эффективность фильтрации шумов, с большой длительностью.

Недостатки данного метода пороговой обработки: - высокая вычислительная сложность.

Блок схема алгоритма фильтрации статистическим методом представлена на рис. 5.

Рис. 5. Блок схема алгоритма фильтрации статистическим методом

На рис. 6 слева представлены графики двух уровней вейвлет-разложения речевого сигнала (первого и второго детализирующего уровня и второго аппроксимационного уровня), а справа – графики вейлет-коэффициентов после пороговой обработки.

Рис. 6 Графики двух уровней вейвлет-разложения речевого сигнала и вейлет-коэффициентов после пороговой обработки

Оценка качества восстановленного речевого сигнала.

Оценка качества речевого сигнала является важной задачей. Отношение сигнал/шум (ОСШ), являющееся одной из наиболее распространенных объективных мер для оценки качества фильтрации зашумленного речевого сигнала, задается выражением

, (4)

где s(n) и – выборочные значения исходного и восстановленного речевого сигнала соответственно; M – общее число выборок в пределах речевого сигнала.

Данное ОСШ является интегральной мерой качества восстановления речи. Более точной мерой, учитывающей присутствие в речевом сигнале низко амплитудных компонент, является сегментное ОСШ (СЕГОСШ), основанное на вычислении кратковременного ОСШ для каждого N-точечного сегмента речи

, (5)

где L и N – число сегментов и отсчетов в сегменте речевого сигнала соответственно; i – номер сегмента речевого сигнала;M=LN – число отсчетов речевого сигнала, состоящего из L сегментов с N отсчетами.

Так как операция усреднения осуществляется после логарифмирования, то СЕГОСШ более точно оценивает качество фильтрации нестационарного речевого сигнала.

На рис. 7 представлен график зависимости ОСШ сигнала и коэффициента сжатия при фильтрации речевого сигнала статистическим методом.

Из рис. 7 видно что ОСШ экспоненциально убывает с увеличением коэффициента сжатия. Например при коэффициенте сжатия 3 ОСШ равно 3,2.

Рис. 7. График зависимости ОСШ сигнала и коэффициента сжатия при фильтрации речевого сигнала статистическим методом

Обзор методов повышения качества и разборчивости зашумленных речевых сигналов показывает, что существует много различных подходов к обработке зашумленной речи. Такое разнообразие методов обусловлено как важностью проблемы так и отсутствием достаточно надежных методов ее решения. Объективное сравнение этих методов и выбор наиболее приемлемых сделать весьма затруднительно, так как перед системами коррекции речевых сигналов ставятся различные задачи. Например, можно в качестве главного критерия использовать повышение разборчивости речи, допуская при этом возможность искажений в тембре голоса или появление артефактов в виде структурированного шума. Можно поставить целью понижение утомляемости аудитора или сохранение натуральности голоса диктора, что достигается в основном за счет повышения качества речевого сигнала. Наконец, могут быть известны заранее важные априорные сведения, например тип или параметры шума, характеристики голоса диктора, наконец, гипотезы о произносимом тексте, что также может определяющим образом повлиять на выбор метода фильтрации. Важно отметить, что универсальных методов обработки, которые одинаково хорошо боролись бы с существенно нестационарными и стационарными, аддитивными и мультипликативными шумами, существенно повышали бы качество и одновременно разборчивость речи, сейчас нет, и возможно не будет. Как типичная (за редкими, указанными в обзоре исключениями, наблюдается обратная тенденция: если сравнивать системы обработки зашумленной речи по двум показателям - повышению качества звучания речевых сигналов и повышению разборчивости, то системы, повышающие качество и натуральность звучания, скорее всего снижают разборчивость и наоборот, повышение разборчивости приводит к понижению качества и натуральности звучания. Поэтому, многие из названных методов фильтрации нужно рассматривать как взаимодополняющие, и в идеальном случае нужно иметь библиотеку из нескольких методов фильтрации. Рассматривая последние тенденции в области обработки зашумленных сигналов, следует особенно выделить высокие результаты, полученные за счет использования математических моделей речевых сигналов, а также использование нейроподобных структур для фильтрации аддитивных стационарных шумов, хотя первые результаты в этом направлении проигрывают более традиционным методам типа минимальной среднеквадратической оценки.

Литература

  1. Шелухин О.И., Лукьянцев Н.Ф. Цифровая обработка и передача речи.- М.: Радио и связь, 2000.

  2. Рабинер Л.Р., Шафер Р.В. Цифровая обработка речевых сигналов.-М.: Радио и связь, 20011.

  3. Секунов Н.Ю. Обработка звука на PC.- СПб.: БХВ-Петербург, 2001.

  4. Нейрокомпьютеры в системах обработки изображений. – М.: Радиотехника, 2003.

  5. Назаров М.В., Прохоров Ю.Н. Методы цифровой обработки и передачи речевых сигналов.- М.: Радио и связь, 2005.

Характеристики

Тип файла
Документ
Размер
18,54 Mb
Тип материала
Учебное заведение
Неизвестно

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов реферата

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6572
Авторов
на СтудИзбе
297
Средний доход
с одного платного файла
Обучение Подробнее