62620 (695116), страница 2

Файл №695116 62620 (Методы и анализ нелинейного режима работы системы ЧАП. Метод фазовой плоскости) 2 страница62620 (695116) страница 22016-07-31СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 2)

Рис.7. Апериодический процесс и его фазовая траектория.

Построение фазового портрета системы обычно начинают с определения его характера вблизи точек равновесия системы, в которых производные . Координаты точек равновесия определяются, как следует из (8), равенствами , . Точки равновесия при построении фазового портрета системы называют особыми.

Поведение фазовых траекторий вблизи особых точек зависит от характера корней соответствующего характеристического уравнения

,

где

, ;

- отклонение от состояния равновесия.

Если и , то процесс является затухающим гармоническим колебанием

, (10)

где и - амплитуда и начальная фаза колебания; - его частота, равная

.

Продифференцировав выражение (10) для по времени, получим

. (11)

Фазовая траектория, построенная по приведённым выражениям для процессов и , имеет вид скручивающейся спирали (см. рис.8), получившей название – устойчивый фокус.

При и процесс является гармоническим колебанием с нарастающей амплитудой. Особая точка соответствует при этом неустойчивому состоянию равновесия и называется неустойчивым фокусом (см. рис.9).

При выполнении условия корни действительные и имеют одинаковый знак. Если они отрицательны, то особая точка является устойчивым узлом (см. рис.10). Положительным корням соответствует особая точка типа неустойчивого узла (см. рис.11). При корни действительные и имеют разные знаки. Особая точка называется седлом (см. рис.12).

Рис.8. Устойчивый фокус.

Рис.9. Неустойчивый фокус.

Рис.10. Устойчивый узел.

Рис.11. Неустойчивый фокус

.

Рис.12. Особая точка типа седла.

Для построения фазового портрета необходимо определить изоклины. Изоклиной называют геометрическое место точек в котором касательные к фазовым траекториям имеют постоянный наклон.

Уравнение изоклины:

.

Для горизонтальных касательных уравнение изоклины:

;

для вертикальных:

.

Ось абсцисс является изоклиной вертикальных касательных. Для особых точек типа узла и седла существуют изоклины, совпадающие с фазовыми траекториями: ( ). Они называются сепаратрисcами.

Рассмотрим пример.

Определим условия вхождения в синхронизм системы, представленной структурной схемой (рис.13), если задающее воздействие изменяется по линейному закону (t) = at и в момент включения системы при t = 0 начальная ошибка имеет конечное значение х(0) = х .



Рис.14. Дискриминационная характеристика (а) и фазовый портрет (б)

Обозначим ошибку слежения.

х(t) = х = (t) – y(t).

Тогда производная этой функции:

= = a – .

Так как в качестве фильтра системы используется интегрирующее звено, то

y(t) = k F(x ) /p.

В результате уравнение ошибки примет вид

= а – k F(x ).

Обозначим

= х



и, пользуясь уравнением

х = а – k F(x ),

построим фазовый портрет системы в координатах (x , х ) для различных значений скорости изменения задающего воздействия а.

При различных значениях а кривая х =f(x ) перемещается параллель - но самой себе. На рис.14 изображено семейство кривых для положительной скорости а. Обозначим максимальное значение функции F(x) = F . Направление движения изображающей точки обозначим в соответствии с правилами: в верхней полуплоскости слева направо; в нижней – справа налево. Проанализируем фазовый портрет.

При а=0 ошибка слежения х 0 при начальных значениях | х (0) | , что следует из направления движений на фазовой траектории. Если 0 а k F , то x стремится к устойчивой точке 1, если начальное рассогласование х (0) меньше величины , соответствующей точке 2. Когда х (0) , захвата не происходит, так как x неограниченно растет. Если скорость /а/ k F , то захвата не будет ни при каких начальных условиях, поскольку нет устойчивых точек на фазовой траектории. Таким образом, условия захвата сигнала, изменяющегося с постоянной скоростью а, состоят в выполнении неравенства kF а. При этом область захвата х(0) . Величина находится из уравнения а – kF( ) =0. Первый корень этого уравнения соответствует точке 1 устойчивого равновесия, а второй корень, соответствующий точке 2, является искомой величиной .


ЛИТЕРАТУРА

1. Коновалов. Г.Ф. Радиоавтоматика: Учебник для вузов. – М.: Высш. шк., 2000.

2. Радиоавтоматика: Учеб. пособие для вузов. / Под ред. В.А. Бесекерского. - М.: Высш. шк., 2005.

3. . Первачев С.В. Радиоавтоматика: Учебник для вузов. - М.: Радио и связь, 2002.

4. Цифровые системы фазовой синхронизации / Под ред. М.И. Жодзишского – М.: Радио, 2000

Характеристики

Тип файла
Документ
Размер
4,16 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов реферата

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
7027
Авторов
на СтудИзбе
260
Средний доход
с одного платного файла
Обучение Подробнее